Publications

Results 1–25 of 88

Search results

Jump to search filters

A computational parametric study of ducted fuel injection implementation in a heavy-duty diesel engine

Fuel

Nyrenstedt, Sven A.G.; Mueller, Charles J.; Liu, Xinlei; Im, Hong G.

Experiments have shown that ducted fuel injection (DFI) effectively reduces soot emissions from direct-injection diesel engines. Although many computational studies have evaluated DFI's spray development and soot reduction mechanisms in constant volume chambers, only limited computational work on internal combustion engines exists. The DFI duct assembly changes the engine's in-cylinder flow, spray, and combustion development. Therefore, current production engine designs might not be optimal for achieving the best engine performance with DFI. This work conducted an extensive numerical study to evaluate how parameter changes affect DFI performance. The parameters include swirl ratio, piston geometry, compression ratio (CR), number of injector orifices, split injection strategy, and exhaust gas recirculation (EGR) in a heavy-duty diesel engine utilizing DFI. The combustion and soot emission data from the Sandia compression ignition optical research engine were used for model validation. Simulations showed that an increased swirl ratio resulted in more intense jet flame-piston interaction, slowing down the combustion heat release during the late combustion stage and leading to lower indicated thermal efficiency (ITE) due to higher exhaust losses. A piston-bowl design with a reentrant inner piston edge yielded the highest thermal efficiency, due to the reduced cylinder head heat transfer loss. Additional injector orifices led to higher efficiency owing to a more advanced combustion phasing. Nevertheless, the maximum pressure rise rate (MPRR) and oxides of nitrogen (NOx) emissions also increased with the number of injector orifices due to more rapid heat release and higher combustion temperature. Implementation of a split injection strategy combined with a higher EGR rate effectively inhibited the excessive MPRR and NOx formation. In general, the study concluded that DFI is not sensitive to most parameter changes but will benefit from future parameter optimization.

More Details

Parametric evaluation of ducted fuel injection in an optically accessible mixing-controlled compression-ignition engine with two- and four-duct assemblies

International Journal of Engine Research

Yraguen, Boni F.; Steinberg, Adam M.; Nilsen, Christopher W.; Biles, Drummond E.; Mueller, Charles J.

Ducted fuel injection (DFI) is a strategy to improve fuel/charge-gas mixing in direct-injection compression-ignition engines. DFI involves injecting fuel along the axis of a small tube in the combustion chamber, which promotes the formation of locally leaner mixtures in the autoignition zone relative to conventional diesel combustion. Previous work has demonstrated that DFI is effective at curtailing engine-out soot emissions across a wide range of operating conditions. This study extends previous investigations, presenting engine-out emissions and efficiency trends between ducted two-orifice and ducted four-orifice injector tip configurations. For each configuration, parameters investigated include injection pressure, injection duration, intake manifold pressure, intake manifold temperature, start of combustion timing, and intake-oxygen mole fraction. For both configurations and across all parameters, DFI reduced engine-out soot emissions compared to conventional diesel combustion, with little effect on other emissions and engine efficiency. Emissions trends for both configurations were qualitatively the same across the parameters investigated. The four-duct configuration had higher thermal efficiency and indicated-specific engine-out nitrogen oxide emissions but lower indicated-specific engine-out hydrocarbon and carbon monoxide emissions than the two-duct assembly. Both configurations achieved indicated-specific engine-out emissions for both soot and nitrogen oxides that comply with current on- and off-road heavy-duty regulations in the United States without exhaust-gas aftertreatment at an intake-oxygen mole fraction of 12%. High-speed in-cylinder imaging of natural soot luminosity shows that some conditions include a second soot-production phase late in the cycle. The probability of these late-cycle events is sensitive to both the number of ducted sprays and the operating conditions.

More Details

Ducted Fuel Injection Provides Consistently Lower Soot Emissions in Sweep to Full-Load Conditions

SAE International Journal of Engines

Nyrenstedt, Sven A.G.; Mueller, Charles J.; Buurman, Noad J.

Earlier studies have proven how ducted fuel injection (DFI) substantially reduces soot for low- and mid-load conditions in heavy-duty engines, without significant adverse effects on other emissions. Nevertheless, no comprehensive DFI study exists showing soot reductions at high- and full-load conditions. This study investigated DFI in a single-cylinder, 1.7-L, optical engine from low- to full-load conditions with a low-net-carbon fuel consisting of 80% renewable diesel and 20% biodiesel. Over the tested load range, DFI reduced engine-out soot by 38.1-63.1% compared to conventional diesel combustion (CDC). This soot reduction occurred without significant detrimental effects on other emission types. Thus, DFI reduced the severity of the soot-NOx tradeoff at all tested conditions. While DFI delivered considerable soot reductions in the present study, previous DFI studies at low- and mid-load conditions delivered larger soot reductions (>90%) compared to CDC operation at the same conditions. Therefore, the DFI configuration used here has been deemed nonoptimal (in terms of parameters such as the injector-spray and piston geometries), and several improvements are recommended for future studies with high-load DFI. These improvements include employing better spray-duct alignment, a deeper piston bowl with a smaller injector umbrella angle, and a fuel injector that opens and closes faster. The study also suggests future research to make DFI ready for commercialization, such as metal-engine tests to ensure desirable DFI performance over an engine's complete speed/load map. Overall, this study supports the continued development and commercialization of DFI to meet upcoming emissions regulations for heavy-duty vehicles. Specifically, multicylinder engine experiments and CFD simulations should be utilized to optimize the performance and clarify the full potential of DFI.

More Details

Ducted fuel injection with Low-Net-Carbon fuels as a solution for meeting future emissions regulations

Fuel

Nyrenstedt, Sven A.G.; Mueller, Charles J.; Nilsen, Christopher W.; Biles, Drummond E.

Several studies have proven how ducted fuel injection (DFI) reduces soot emissions for compression-ignition engines. Nevertheless, no comprehensive study has investigated how DFI performs over a load range in combination with low-net-carbon fuels. In this study, optical-engine experiments were performed with four different fuels—conventional diesel and three low-net-carbon fuels—at low and moderate load, to measure emissions levels and performance. The 1.7-liter single-cylinder optical engine was equipped with a high-speed camera to capture natural luminosity images of the combustion event. Conventional diesel and DFI combustion were investigated at four different dilution levels (to simulate exhaust-gas recirculation effects), from 14 to 21 mol% oxygen in the intake. At a given dilution level, with commercial diesel fuel, DFI reduced soot by 82% at medium load, and 75% at low load without increasing NOx. The results further show how DFI with dilution reduces soot and NOx without compromising engine performance or other emission types, especially when combined with low-net-carbon fuels. DFI with the oxygenated low-net-carbon blend HEA67 simultaneously reduced soot and NOx by as much as 93 % and 82 %, respectively, relative to conventional diesel combustion with commercial diesel fuel. These soot and NOx reductions occurred while lifecycle CO2 was reduced by at least 70 % when using low-net-carbon fuels instead of conventional diesel. All emissions changes were compared with future emissions regulations for different vehicle sectors to investigate how DFI can be used to facilitate achievement of the regulations. Finally, the results show how the DFI cases fall below several future emissions regulation levels, rendering less need for aftertreatment systems and giving a possible lower cost of ownership.

More Details

Solid particulate mass and number from ducted fuel injection in an optically accessible diesel engine in skip-fired operation

International Journal of Engine Research

Wilmer, Brady M.; Nilsen, Christopher W.; Biles, Drummond E.; Mueller, Charles J.; Northrop, William F.

Ducted fuel injection (DFI) is a novel combustion strategy that has been shown to significantly attenuate soot formation in diesel engines. While previous studies have used optical diagnostics and optical filter smoke number methods to show that DFI reduces in-cylinder soot formation and engine-out soot emissions, respectively, this is the first study to measure solid particle number (PN) emissions in addition to particle mass (PM). Furthermore, this study quantitatively evaluates the use of transient particle instruments for measuring particles from skip-fired operation in an optical single cylinder research engine (SCRE). Engine-out PN was measured using an engine exhaust particle sizer following a catalytic stripper, and PM was measured using a photoacoustic analyzer. The study improves on earlier preliminary emissions studies by clearly showing that DFI reduces overall PM by 76%–79% and PN for particles larger than 23 nm by 77% relative to conventional diesel combustion at a 1200-rpm, 13.3-bar gross indicated mean effective pressure operating condition. The degree of engine-out PM reduction with DFI was similar across both particulate measurement instruments used in the work. Through the use of bimodal distribution fitting, DFI was also shown to reduce the geometric mean diameter of accumulation mode particles by 26%, similar to the effects of increased injection pressure in conventional diesel combustion systems. This work clearly shows the significant solid particulate matter reductions enabled by DFI while also demonstrating that engine-out PN can be accurately measured from an optical SCRE operating in a skip-fired mode. Based on these results, it is believed that DFI has the potential to enable fuel savings when implemented in multi-cylinder engines, both by lowering the required frequency of active diesel particulate filter regeneration, and by reducing the backpressure imposed by exhaust filtration systems.

More Details

Oxygenated Fuel Blending Effects in a Mixing-Controlled Compression-Ignition Engine Equipped with Ducted Fuel Injection [Slides]

Biles, Drummond E.; Mueller, Charles J.; Nilsen, Christopher W.; Wilmer, Brady

Continued creation of harmful emissions such as NOx and soot from compression-ignition engines utilizing mixing-controlled combustion systems (i.e., diesel engines) remains a problem and is the subject of on-going research. The inherently high efficiency, relatively low cost, and numerous other desirable attributes of such engines, coupled with a widely supported infrastructure, motivates their continued advancement. Recently, a scientifically distinct and mechanically simple technology called ducted fuel injection (DFI) has shown a robust ability to allow such engines to operate with simultaneously low engine-out soot and NOx emissions when it is employed with simulated exhaust-gas recirculation. To better understand the property ranges of sustainable, oxygenated-fuel blending stocks that will most improve engine performance, two oxygenated blendstocks were separately blended with a commercial diesel base fuel and tested within a heavy-duty diesel optical engine equipped with a four-duct DFI configuration. Conventional and crank-angle-resolved optical diagnostics were used to elucidate the effects of fuel ignition quality, oxygenate molecular structure, and overall oxygen content on engine performance.

More Details

Effects of fuel oxygenation and ducted fuel injection on the performance of a mixing-controlled compression-ignition optical engine with a two-orifice fuel injector

Applications in Energy and Combustion Science

Mueller, Charles J.; Nilsen, Christopher W.; Biles, Drummond E.; Yraguen, Boni F.

This paper describes results from an optical-engine investigation of oxygenated fuel effects on ducted fuel injection (DFI) relative to conventional diesel combustion (CDC). Three fuels were tested: a baseline, non-oxygenated No. 2 emissions certification diesel (denoted CFB), and two blends containing potential renewable oxygenates. The first oxygenated blend contained 25 vol% methyl decanoate in CFB (denoted MD25), and the second contained 25 vol% tri-propylene glycol mono-methyl ether in CFB (denoted T25). Whereas DFI and fuel oxygenation primarily curtail soot emissions, intake-oxygen mole fractions of 21% and 16% were employed to explore the potential additional beneficial impact of dilution on engine-out emissions of nitrogen oxides (NOx). It was found that DFI with an oxygenated fuel can attenuate soot incandescence by ~100X (~10X from DFI and an additional ~10X from fuel oxygenation) relative to CDC with conventional diesel fuel, regardless of dilution level and without large effects on other emissions or efficiency. This breaks the soot/NOx trade-off with dilution, enabling simultaneous reductions in both soot and NOx emissions, even with conventional diesel fuel. Significant cyclic variability in soot incandescence for both CDC and DFI suggests that additional improvements in engine-out soot emissions may be possible via improved control of in-cylinder mixture formation and evolution.

More Details

Heavy-Duty Mixed-Controlled Compression Ignition: Fuel Effects and Ducted Fuel Injection

Mueller, Charles J.

This project is focused on developing advanced combustion strategies for mixing-controlled compression ignition (MCCI, i.e., diesel-cycle) engines that are synergistic with renewable and/or unconventional fuels in a manner that enhances domestic energy security, economic competitiveness, and environmental quality. During this reporting period, the two focus areas were ducted fuel injection (DFI) and surrogate diesel fuels.

More Details

Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling

SAE International Journal of Engines

Nilsen, Christopher W.; Yraguen, Boni F.; Mueller, Charles J.; Genzale, Caroline; Delplanque, Jean P.

Diesel engines are an important technology for transportation of both people and goods. However, historically they have suffered a significant downside of high soot and nitrogen oxides (NOx) emissions. Recently, ducted fuel injection (DFI) has been demonstrated to attenuate soot formation in compression-ignition engines and combustion vessels by 50% to 100%. This allows for diesel engines to be run at low-NOx emissions that would have otherwise produced significantly more soot due to the soot/NOx tradeoff. Currently the root causes of this soot attenuation are not well understood. To be able to better optimize DFI for use across a variety of engines and conditions, it is important to understand clearly how it works. This study expands on the current understanding of DFI by using numerical modeling under nonreacting conditions to provide insights about the roles of entrainment and mixing that would have been much more challenging to obtain experimentally. This study found that DFI enhances charge gas entrainment upstream of the duct and blocks entrainment inside of the duct. Mixing is enhanced by the duct, which results in lower peak equivalence ratios at the exit of the duct.

More Details

Optical Engine Lockout System Design and Operation

Martinet, Vittorio C.; Mueller, Charles J.; Biles, Drummond E.

Engine run days in the Diesel Combustion and Fuel Effects Lab are hectic. The long mental lists that must be kept by engine operators, paired with the tight time constraints between experiments, can cause operational issues that may be dangerous to personnel and/or cause damage to test equipment. Until now, a paper sign has been used to warn operators not to motor the engine when a foreign object has been placed inside of it. Unfortunately, this simple administrative control has failed in the past, motivating this effort to develop an improved system. The lockout system described in this document introduces an engineering control that, when activated, actually prevents the engine from being motored. The new system consists of a primary and a secondary control panel. Prior to an operator placing a foreign object into the cylinder, they press a button on the secondary control panel near the engine. This breaks the interlock circuit for the engine dynamometer and activates LEDs on both control panels to notify operators that a foreign object is present within the engine cylinder. Once the work is done and all foreign objects have been removed from the combustion chamber, two operators must be present to disable the system by simultaneously pressing the buttons on the primary and secondary control panels. Requiring a second operator to disable the system increases accountability and reduces the likelihood of potentially costly mistakes.

More Details
Results 1–25 of 88
Results 1–25 of 88