Publications

Results 51–75 of 282

Search results

Jump to search filters

Understanding and Predicting Stress Corrosion Cracking of SNF Dry Storage Canisters

Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting

Bryan, Charles R.; Knight, Andrew W.; Nation, Brendan L.; Katona, Ryan M.; Karasz, Erin K.; Montoya, T.J.; Brooks, Dusty M.; Porter, N.W.; Gilkey, Lindsay N.; Taylor, Jason M.; Schaller, Rebecca S.

Abstract not provided.

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY21 Status Report)

Bryan, Charles R.; Knight, Andrew W.; Nation, Brendan L.; Montoya, Timothy M.; Karasz, Erin K.; Katona, Ryan M.; Schaller, Rebecca S.

This progress report describes work performed during FY21 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of canister materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In FY21, modeling and experimental work was performed that further defined our understanding of the potential chemical and physical environment present on canister surfaces at both marine and inland sites. Research also evaluated the relationship between the environment and the rate, extent, and morphology of corrosion, as well as the corrosion processes that occur. Finally, crack growth rate testing under relevant environmental conditions was initiated.

More Details

SNF Canister Coatings for Corrosion Prevention and Mitigation (FY21 Status Report)

Knight, Andrew W.; Nation, Brendan L.; Bryan, Charles R.; Schaller, Rebecca S.

This report summarizes the current actives in FY21 related to the effort by Sandia National Laboratories to identify and test coating materials for the prevention, mitigation, and repair of spent nuclear fuel dry storage canisters against potential chloride-induced stress corrosion cracking. This work follows up on the details provided in Sandia National Laboratories FY20 report on the same topic, which provided a detailed description of the specific coating properties desired for application and implementation on spent nuclear fuel canisters, as well as provided detail into several different coatings and their applicability to coat spent nuclear fuel canisters. In FY21, Sandia National Laboratories has engaged with private industry to create a Memorandum of Understanding and established a collaborative R&D program building off the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of private industry. The resulting Memorandum of Understanding included four companies to date (Oxford Performance Materials, White Horse R&D, Luna Innovations, and Flora Coating) proposing six different coating technologies (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, silane-based polyurethane hybrid with and without a Znrich primer, and a quasi-ceramic sol-gel polyurethane hybrid) to be tested, evaluated, and optimized for their potential use for this application. This report provides a detailed description of each of the coating systems proposed by the participating industry partners. It also provides a description of the planned experimental actives to be performed by Sandia National Laboratories including physical tests, electrochemical tests, and characterization methods. These analyses will be used to identify specific ways to further improve coating technologies toward their application and implementation on spent nuclear fuel canisters. In FY21, Sandia National Laboratories began baseline testing of the base metal material in according with activities of the Memorandum of Understanding. In FY22, Sandia National Laboratories will receive coated coupons from each of the participating industry partners and begin characterization, physical, and electrochemical testing following the test plan described herein.

More Details

FY21 Status Report: Probabilistic SCC Model for SNF Dry Storage Canisters

Porter, N.W.; Brooks, Dusty M.; Bryan, Charles R.; Katona, Ryan M.; Schaller, Rebecca S.

Stress corrosion cracking (SCC) is an important failure degradation mechanism for storage of spent nuclear fuel. Since 2014, Sandia National Laboratories has been developing a probabilistic methodology for predicting SCC. The model is intended to provide qualitative assessment of data needs, model sensitivities, and future model development. In fiscal year 2021, improvement of the SCC model focused on the salt deposition, maximum pit size, and crack growth rate models.

More Details

Neutron diffraction illustrates residual stress behavior of welded alloys used as radioactive confinement boundary

International Journal of Pressure Vessels and Piping

Chatzidakis, Stylianos; Tang, Wei; Payzant, Andrew; Bunn, Jeff; Bryan, Charles R.; Scaglione, John; Wang, Jy A.

Corrosion-resistant welded alloys are frequently used as a leak-tight boundary in critical applications that require confinement of hazardous and/or radioactive substances, including an increasing population of spent nuclear fuel (SNF) canisters. The behavior of residual stresses generated as a result of irregular elastic–plastic deformation during processes such as welding is one of today's key issues to a full understanding of the aging mechanisms that may compromise the confinement boundary. Whether such processes and any subsequent weld repairs, not subjected to post-weld heat treatment, would negatively affect the initial material by introducing through-thickness tensile stresses remains an open question. Here we report the first residual stress measurements using neutron diffraction on the welded joints of a SNF canister. We found significant tensile residual stresses in the as welded sample, indicating that initiation and through-thickness growth of cracks may be possible. Following repair, we observed a stress redistribution and introduction of beneficial compressive stresses. We anticipate our results will improve understanding of confinement susceptibility to aging and guide improvements in repair techniques.

More Details

Surface Sampling Techniques for the Canister Deposition Field Demonstration

Bryan, Charles R.; Knight, Andrew W.; Schaller, Rebecca S.; Durbin, S.G.; Nation, Brendan L.; Jensen, Philip

This report describes plans for dust sampling and analysis for the multi-year Canister Deposition Field Demonstration. The demonstration will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters, which will be stored at an ISFSI site in Advanced Horizontal Storage Modules. One canister will be unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, the size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Sampling locations on the canister surface will nominally include 25 locations, corresponding to 5 circumferential locations at each of the 5 longitudinal locations. At each sampling location, a 2x2 sampling grid (containing 4 sample cells) will be painted onto the metal surface. During each sampling campaign, two samples at each sampling location will be collected, in a specific routine to measure both periodic (yearly or bi-yearly) and cumulative deposition rates. For each sample, a wet and a dry sample will be collected. Wet samples will be analyzed to determine the composition of the soluble salt fraction and to estimate salt loading per unit area. Dry samples will be analyzed to assess particle size, morphology, mineralogy, and identity (e.g. for floral/faunal fragments). The data generated by this proposed sampling plan will provide detailed information on dust and salt aerosol deposits on spent nuclear fuel canister surfaces. The anticipated results include information regarding particle compositions, size distributions, and morphologies, in addition to particle deposition rates as a function of canister surface location, orientation, time, and temperature. The information gathered during the Canister Deposition Field Demonstration is critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking on SNF dry storage canisters

More Details

Quantitative assessment of environmental phenomena on maximum pit size predictions in marine environments

Electrochimica Acta

Katona, Ryan M.; Knight, Andrew W.; Schindelholz, E.J.; Bryan, Charles R.; Schaller, Rebecca S.; Kelly, R.G.

Maximum pit sizes were predicted for dilute and concentrated NaCl and MgCl2 solutions as well as sea-salt brine solutions corresponding to 40% relative humidity (RH) (MgCl2-rich) and 76% RH (NaCl-rich) at 25 °C. A quantitative method was developed to capture the effects of various cathode evolution phenomena including precipitation and dehydration reactions. Additionally, the sensitivity of the model to input parameters was explored. Despite one's intuition, the highest chloride concentration (roughly 10.3 M Cl−) did not produce the largest predicted pit size as the ohmic drop was more severe in concentrated MgCl2 solutions. Therefore, the largest predicted pits were calculated for saturated NaCl (roughly 5 M Cl−). Next, it was determined that pit size predictions are most sensitive to model input parameters for concentrated brines. However, when the effects of cathodic reactions on brine chemistry are considered, the sensitivity to input parameters is decreased. Although there was not one main input parameter that influenced pit size predictions, two main categories were identified. Under similar chloride concentrations (similar RH), the water layer thickness (WL), and pit stability product, (i·x)sf, are the most influential factors. When varying chloride concentrations (RH), changes in WL, the brine specific cathodic kinetics on the external surface (captured in the equivalent current density (ieq)), and conductivity (κo) are the most influential parameters. Finally, it was noted that dehydration reactions coupled with precipitation in the cathode will have the largest effect on predicted pit size, and cause the most significant inhibition of corrosion damage.

More Details
Results 51–75 of 282
Results 51–75 of 282