This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to establish corrosion rates and component lifetimes. Finally, it is unlikely that the aluminum-based neutron absorber materials that are commonly used in existing DPCs would survive for 10,000 years in disposal environments, because the aluminum will act as a sacrificial anode for the steel. We recommend additional testing of borated and Gd-bearing stainless steels, to establish general and localized corrosion resistance in repository-relevant environmental conditions.
This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.
Results reported here continue to support the FY13 conclusion that direct disposal of DPCs is technically feasible, at least for some DPCs, and for some disposal concepts (geologic host media). Much of the work performed has reached a point where site-specific information would be needed for further resolution. Several activities in FY14 have focused on clay/shale media because of potential complications resulting from low thermal conductivity, limited temperature tolerance, and the need to construct hundreds of kilometers of emplacement drifts that will remain stable for at least 50 years. Technologies for rapid excavation and liner installation have significantly advanced in the past 20 years. Tunnel boring machines are the clear choice for large-scale excavation. The first TBM excavations, including some constructed in clay or shale media, are now approaching 50 years of service. Open-type TBMs are a good choice but the repository host formation would need to have sufficient compressive strength for the excavation face to be self-supporting. One way to improve the strength-stress relationship is to reduce the repository depth in soft formations (e.g., 300 m depth). The fastest construction appears to be possible using TBMs with a single-pass liner made of pre-fabricated concrete segments. Major projects have been constructed with prefabricated segmented liner systems, and with cast-in-place concrete liners. Cost comparisons show that differences in project management and financing may be larger cost factors than the choice of liner systems. Costs for large-scale excavation and construction in clay/shale media vary widely but can probably be limited to $10,000 per linear meter, which is similar to previous estimates for repository construction. Concepts for disposal of DPC-based waste packages in clay/shale media are associated with thermal management challenges because of the relatively low thermal conductivity and limited temperature tolerance. Peak temperature limits of 100°C or lower for clay-rich materials have been selected by some international programs, but a limit above 100°C could help to shorten the duration of surface decay storage and repository ventilation. The effects of locally higher peak temperatures on repository performance need to be evaluated (in addition to the effects at lower temperatures). This report describes a modeling approach that couples the TOUGH2 and FLAC3D codes to represent thermally driven THM processes, as a demonstration of the types of models needed.
Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.
Report RWEV-REP-001, Analysis of Postclosure Groundwater Impacts for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High Level Radioactive Waste at Yucca Mountain, Nye County, Nevada was issued by the DOE in 2009 and is currently being updated. Sandia National Laboratories (SNL) provided support for the original document, performing calculations and extracting data from the Yucca Mountain Performance Assessment Model that were used as inputs to the contaminant transport and dose calculations by Jason Associates Corporation, the primary developers of the DOE report. The inputs from SNL were documented in LSA-AR-037, Inputs to Jason Associates Corporation in Support of the Postclosure Repository Supplemental Environmental Impact Statement. To support the updating of the original Groundwater Impacts document, SNL has reviewed the inputs provided in LSA-AR-037 to verify that they are current and appropriate for use. The results of that assessment are documented here.
A primary concern with dry storage of spent nuclear fuel is chloride-induced stress corrosion cracking, caused by deliquescence of salts deposited on the stainless steel canisters. However, limited access through the ventilated overpacks and high surface radiation fields impede direct examination of cask surfaces for CISCC, or sampling of surface deposits. Predictive models for CISCC must be able to predict the occurrence of a corrosive chemical environment (a chloride-rich brine formed by dust deliquescence) at specific locations (e.g. weld zones) on the canister surface. The presence of a deliquescent brine is controlled by the relative humidity (RH), which is a function of absolute humidity and cask surface temperature. This requires a thermal model that includes the canister and overpack design, canister-specific waste heat load, and passive cooling by ventilation. Brine compositions vary with initially-deposited salt assemblage, reactions with atmospheric gases, temperature, and the relative rates of salt deposition and reaction; predicting brine composition requires site-specific compositional data for atmospheric aerosols and acid gases. Aerosol particle transport through the overpack and deposition onto the canister must also be assessed. Initial field data show complex variability in the amount and composition of deposited salts as a function of canister surface location.
A primary concern with dry storage of spent nuclear fuel is chloride-induced stress corrosion cracking, caused by deliquescence of salts deposited on the stainless steel canisters. However, limited access through the ventilated overpacks and high surface radiation fields impede direct examination of cask surfaces for CISCC, or sampling of surface deposits. Predictive models for CISCC must be able to predict the occurrence of a corrosive chemical environment (a chloride-rich brine formed by dust deliquescence) at specific locations (e.g. weld zones) on the canister surface. The presence of a deliquescent brine is controlled by the relative humidity (RH), which is a function of absolute humidity and cask surface temperature. This requires a thermal model that includes the canister and overpack design, canister-specific waste heat load, and passive cooling by ventilation. Brine compositions vary with initially-deposited salt assemblage, reactions with atmospheric gases, temperature, and the relative rates of salt deposition and reaction; predicting brine composition requires site-specific compositional data for atmospheric aerosols and acid gases. Aerosol particle transport through the overpack and deposition onto the canister must also be assessed. Initial field data show complex variability in the amount and composition of deposited salts as a function of canister surface location.
For the interim storage of used nuclear fuel, the storage casks/containers will be exposed to conditions under which considerable dust and/or atmospheric aerosols may be deposited on the surface. These dust layers may contain a sizeable portion of water soluble salts, particularly in marine environments where many interim storage systems are located. These soluble salts will deliquesce if sufficient moisture is present, resulting in the formation of potentially corrosive brine on the material surface. Experimental results have illustrated that some stainless steels, such as 304SS (a common material of construction for interim storage containers) can and will undergo localized corrosion in elevated temperature conditions where a chloride rich brine has formed on the surface. Results presented here illustrate that it is possible that stifling of localized attack will result when limited reactant is present, but additional analysis is necessary before a definite conclusion can be made.
Once sufficiently cool, spent nuclear fuel is stored in dry storage cask systems, most commonly consisting of welded stainless steel containers enclosed in ventilated concrete or steel overpacks. As the United States does not currently have a viable disposal pathway for SNF, these containers may be required to perform their waste isolation function for many decades beyond their original design criteria. Failure by stress corrosion cracking due to deliquescence of deposited salt aerosols is a major concern. Parameters controlling deliquescence include the temperature and RH at the waste package surface, and the composition of deposited salts. The timing and duration of deliquescence under in situ conditions is poorly defined, because of uncertainties in thermal history, the large variability in temperatures over the storage container surface, and uncertainties in the composition of deposited salts. Storage installations in near-marine environments are of greatest concern because of exposure to significant quantities of chloride-rich sea salt aerosols. Published stainless steel corrosion studies with sea salt and sea salt components suggest that conditions conducive to localized corrosion initiation and propagation may exist on the surface of SNF storage containers in such environments at some point in their extended service life, and furthermore, that stress corrosion cracking may occur over a broad range of potentially relevant conditions. However, the studies were carried out with heavy salt loads and limited gas flow, which may limit the beneficial effects of brine/atmosphere exchange (e.g., acid degassing, CO2 exchange, degassing and thermal decomposition of ammonium phases). Gas exchange with the atmosphere will modify brine pH and chloride content, and will modify the deliquescent salt assemblage through precipitation of Ca and Mg carbonates, potentially limiting brine volumes or resulting in dryout. Nitrate-rich inland salt aerosols are considered less corrosive, but may have higher levels of potentially reactive pollutants. Moreover, the compositions of inland salt deposits on hot storage containers may have greater uncertainty, as ammonium- and nitrate-rich salt assemblages are subject to thermal decomposition and potential reactions with organics. For both inland and near-marine sites, little information is available on the dust/salt deposition rates, or the quantity of salt present on existing storage container surfaces. A sampling program for in situ dust deposits on current storage containers will provide critical compositional data for new stress corrosion cracking studies, and will allow evaluation of the applicability of existing studies of stainless steel stress corrosion cracking under conditions of dust deliquescence.
In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.