Publications

Results 26–50 of 62

Search results

Jump to search filters

Cordova Electric Cooperative Energy Storage Evaluation

Schenkman, Benjamin L.; Vandermeer, Jeremy B.; Baca, Michael J.; Mueller-Stoffels, Marc; Koplin, Clay

The community of Cordova, Alaska currently uses diesel and run-of-river hydro generation for its electricity needs. In the past, 60% of the Cordova summer load was supplied by the run-of-river generation. The majority of the time, the load was supplied only by the run-of-river generation. The bulk of generated electricity is delivered to Cordova's industrial fish processing plants and to other industrial loads. With the expansion of Cordova's fishing industry, the run-of-river generation is less often able to supply 100% of the load demand. When the run-of-river generation is not able to supply 100% of the load demand it has to be supplemented by diesel generation. There are also many times when the load demand is low and the available run-of-river generation has to be curtailed by spilling water which could be stored in an energy storage system. Sandia National Laboratories and Alaska Center for Energy and Power collaborated to evaluate how an energy storage system can be used to capture the spilled water and how it can economically and technically benefit Cordova during the fishing season and other times throughout the year. Results from this study are summarized in this report.

More Details

Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories

Schenkman, Benjamin L.

Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

More Details

Real-time digital simulation to improve advanced microgrid design

Proposed Journal Article, unpublished

Schenkman, Benjamin L.; Chae, Suyong; Oh, Seaseung; Jensen, Richard P.; Hightower, Marion M.

In this study, there are several ways to address energy reliability concerns during an extended power outage. This can include hardening the energy infrastructure to reduce potential loss of power, adding redundant backup systems with larger fuel tanks, and improving generator reliability through better maintenance. While each is valid, they are often expensive to adequately implement. The traditional emergency power approach for decades has been the use of building-tied emergency generators to start up and supply emergency power until the utility can come back on line. Unfortunately, operational experience from many recent extended power outages has shown that emergency backup generators are often mismatched in size with the building energy load, under-maintained such that their operational reliability is well below expected values, and have insufficient fuel to operate for the entire power outage. Here we describe how energy reliability and security can be enhanced with the use of Advanced Microgrids.

More Details

Energy Surety Design Methodology

Broderick, Robert J.; Cook, Marvin A.; DeMenno, Mercy D.; El Khatib, Mohamed; Guttromson, Ross G.; Hightower, Michael H.; Jones, Katherine A.; Nanco, Alan N.; Schenkman, Benjamin L.; Schoenwald, David A.; Silva Monroy, Cesar A.

The Energy Surety Design Methodology (ESDM) provides a systematic approach for engineers and researchers to create a preliminary electric grid design, thus establishing a means to preserve and quickly restore customer-specified critical loads. Over a decade ago, Sandia National Laboratories (Sandia) defined Energy Surety for applications with energy systems to include elements of reliability, security, safety, cost, and environmental impact. Since then, Sandia has employed design concepts of energy surety for over 20 military installations and their interaction with utility systems, including the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. In recent years, resilience has also been added as a key element of energy surety. This methodology document includes both process recommendations and technical guidance, with references to useful tools and analytic approaches at each step of the process.

More Details

Sandia Third-Party Witness Test of UniEnergy Technologies 1 MW / 3.2 MWh Uni.SystemTM

Schenkman, Benjamin L.; Borneo, Daniel R.

Sandia National Laboratories performs third-party witness testing for energy storage systems installed on the electric grid. Witness testing verifies that the energy storage system that is installed can meet its performance specifications through a thorough evaluation which includes testing, document review, and physical inspection. This document contains the results for the Sandia National Laboratories witness test on the UniEnergy Technologies 1 MW / 3.2 MWh vanadium flow battery known as the Uni.SystemTM.

More Details

City of Hoboken Energy Surety Analysis: Preliminary Design Summary

Stamp, Jason E.; Baca, Michael J.; Eddy, John P.; Guttromson, Ross G.; Henry, Jordan M.; Munoz-Ramos, Karina M.; Schenkman, Benjamin L.; Smith, Mark A.

In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

More Details

Test Report : GS Battery, EPC power HES RESCU

Rosewater, David M.; Schenkman, Benjamin L.; Borneo, Daniel R.

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

More Details

Test report :

Rosewater, David M.; Schenkman, Benjamin L.; Borneo, Daniel R.

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

More Details
Results 26–50 of 62
Results 26–50 of 62