Removing Safeguards and Security Roadblocks for Advanced Reactors
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Material Protection, Accounting, and Control Technologies program utilizes modeling and simulation to assess Material Control and Accountability (MC&A) concerns for a variety of nuclear facilities. Single analyst tools allow for rapid design and evaluation of advanced approaches for new and existing nuclear facilities. A low enriched uranium (LEU) fuel conversion and fabrication facility simulator is developed to assist with MC&A for existing facilities. Measurements are added to the model (consistent with current best practices). Material balance calculations and statistical tests are also added to the model. In addition, scoping work is performed for developing a single stage aqueous reprocessing model. Preliminary results are presented and discussed, and next steps outlined.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Advanced Reactor Safeguards (ARS) program was established in 2020 as part of appropriations for the Advanced Reactor Demonstration Program (ARDP) through the Office of Nuclear Energy in the Department of Energy. The goal of this program is to help address near term challenges that advanced nuclear reactor vendors face in meeting domestic Material Control and Accountancy (MC&A) and Physical Protection System (PPS) requirements for U.S. construction. Existing regulations for safeguards and security, as outlined in the Code of Federal Regulations, were written for large light water reactors, and some of the requirements are not suited to smaller, safer advanced reactor designs. The ARS program seeks to remove roadblocks in the deployment of new and advanced reactors by solving regulatory challenges, reducing safeguards and security costs, and utilizing the latest technologies and approaches for robust plant monitoring and protection. Safeguards and Security by Design (SSBD), or the consideration of safeguards and security requirements early in the design process, is an overarching principle that guides this program. This roadmap discusses the goals of the ARS program, current research, and program plan for the next five years.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Nuclear Materials Management
University research is a strong focus of the Office of Nuclear Energy within the Department of Energy. This research complements existing work in the various program areas and provides support and training for students entering the field. Four university projects have provided support to the Material Protection Accounting and Controls Technologies (MPACT) 2020 milestone focused on safeguards for electrochemical processing facilities. The University of Tennessee Knoxville has examined data fusion of NDA measurements such as Hybrid K-Edge Densitometry and Cyclic Voltammetry. Oregon State University and Virginia Polytechnic Institute have examined the integration of accountancy data with process monitoring data for safeguards. The Ohio State University and the University of Utah have developed a Ni-Pt SiC Schottky diode capable of high temperature alpha spectroscopy for actinide detection of molten salts. Finally, the University of Colorado has developed a key enabling technology for the use of Microcalorimetry.
Abstract not provided.