Mesh Adaptation in Albany
Abstract not provided.
Abstract not provided.
Geophysical Journal International
A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this study, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that the effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Finally, overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.
Abstract not provided.
Abstract not provided.
Ocean Modelling
Newton–Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton's method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earth System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. For many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.