The mechanical behavior of partial-penetration laser welds exhibits significant variability in engineering quantities such as strength and apparent ductility. Understanding the root cause of this variability is important when using such welds in engineering designs. In Part II of this work, we develop finite element simulations with geometry derived from micro-computed tomography (μCT) scans of partial-penetration 304L stainless steel laser welds that were analyzed in Part I. We use these models to study the effects of the welds’ small-scale geometry, including porosity and weld depth variability, on the structural performance metrics of weld ductility and strength under quasi-static tensile loading. We show that this small-scale geometry is the primary cause of the observed variability for these mechanical response quantities. Additionally, we explore the sensitivity of model results to the conversion of the μCT data to discretized model geometry using different segmentation algorithms, and to the effect of small-scale geometry simplifications for pore shape and weld root texture. The modeling approach outlined and results of this work may be applicable to other material systems with small-scale geometric features and defects, such as additively manufactured materials.
Background: Using a thin-walled tube torsion test to characterize a material’s shear response is a well-known technique; however, the thin walled specimen tends to buckle before reaching large shear deformation and failure. An alternative technique is the surface stress method (Nadai 1950; Wu et al. J Test Eval 20:396–402, 1992), which derives a shear stress-strain curve from the torque-angular displacement relationship of a solid cylindrical bar. The solid bar torsion test uniquely stabilizes the deformation which allows us to control and explore very large shear deformation up to failure. However, this method has rarely been considered in the literature, possibly due to the complexity of the analysis and experimental issues such as twist measurement and specimen uniformity. Objective: In this investigation, we develop a method to measure the large angular displacement in the solid bar torsion experiments to study the large shear deformation of two common engineering materials, Al6061-T6 and SS304L, which have distinctive hardening behaviors. Methods: Modern stereo-DIC methods were applied to make deformation measurements. The large angular displacement of the specimen posed challenges for the DIC analysis. An analysis method using multiple reference configurations and transformation of deformation gradient is developed to make the large shear deformation measurement successful. Results: We successfully applied the solid bar torsion experiment and the new analysis method to measure the large shear deformation of Al6061-T6 and SS304L till specimen failure. The engineering shear strains at failure are on the order of 2–3 for Al6061-T6 and 3–4 for SS304L. Shear stress-strain curves of Al6061-T6 and SS304L are also obtained. Conclusions: Solid bar torsion experiments coupled with 3D-DIC technique and the new analysis method of deformation gradient transformation enable measurement of very large shear deformation up to specimen failure.
Foam materials are extensively utilized in aerospace, military, and transportation applications to mitigate blast or shock impact. When foam materials are subjected to an external high-speed impact, shock, or blast loading, an elastic wave or shock wave will form and propagate through the thickness of the foam materials. In this study, silicone foam pads, which were confined laterally and pre-strained to different levels, were experimentally characterized and theoretically analyzed to understand their effects on wave propagation characteristics under impact loading. Depending on impact velocity, either an elastic strain wave or a shock wave would be generated in the silicone foam pad with different pre-strains. Above a certain impact velocity, a shock wave will be generated whereas, below this threshold impact velocity, an elastic strain wave will be generated. This threshold impact velocity depends on the pre-strain applied to the silicone foam pad. Equations are provided to estimate the wave propagation speed for either an elastic or a shock wave from the amount of pre-strain in the silicone foam pads and the impact velocity. These equations are expected to help improve silicone foam design and assembly processes for shock or blast mitigation applications.
Polymeric foams have been extensively used in shock isolation applications because of their superior shock or impact energy absorption capability. In order to meet the shock isolation requirements, the polymeric foams need to be experimentally characterized and numerically modeled in terms of material response under shock/impact loading and then evaluated with experimental, analytical, and/or numerical efforts. Measurement of the dynamic compressive stress-strain response of polymeric foams has become fundamental to the shock isolation performance. However, radial inertia has become a severe issue when characterizing soft materials. It is even much more complicated and difficult to address the radial inertia effect in soft polymeric foams. In this study, we developed an analytical method to calculate the additional stress induced by radial inertia in a polymeric foam specimen. The effect of changing profile of Poisson’s ratio during deformation on radial inertia was investigated. The analytical results were also compared with experimental results obtained from Kolsky compression bar tests on a silicone foam.
Hyperelastic foams have excellent impact energy absorption capability and can experience full recovery following impact loading. Consequently, hyperelastic foams are selected for different applications as shock isolators. Obtaining accurate intrinsic dynamic compressive properties of the hyperelastic foams has become a crucial step in shock isolation design and evaluation. Radial inertia is a key issue in dynamic characterization of soft materials. Radial inertia induced stress in the sample is generally caused by axial acceleration and large deformation applied to a soft specimen. In this study, Poisson's ratio of a typical hyperelastic foam-silicone foam-was experimentally characterized under high strain rate loading and was observed to drastically change across the densification process. A transition in the Poisson's ratio of the silicone foam specimen during dynamic compression generated radial inertia which consequently resulted in additional axial stress in the silicone foam sample. A new analytical method was developed to address the Poisson's ratio-induced radial inertia effects for hyperelastic foams during high rate compression.
This report describes the mechanical characterization of six types of woven composites that Sandia National Laboratories are interested in. These six composites have various combinations of two types of fibers (Carbon-IM7 and Glass-S2) and three types of resins (UF-3362, TC275-1, TC350-1). In this work, two sets of experiments were conducted: quasi-static loading with displacement rate of 2 mm/min (1.3x10^(-3) in/s) and high rate loading with displacement of 5.08 m/s (200 in/s). Quasi-static experiments were performed at three loading orientations of 0°, 45°, 90° for all the six composites to fully characterize their mechanical properties. The elastic properties Young's modulus and Poisson's ratio, as well as ultimate stress and strain were obtained from the quasi-static experiments. The high strain rate experiments were performed only on glass fiber composites along 0° angle of loading. The high rate experiments were mainly to study how the strain rate affects the ultimate stress of the glass-fiber composites with different resins.
Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.
We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.
Flexible open celled foams are commonly used for energy absorption in packaging. Over time polymers can suffer from aging by becoming stiffer and more brittle. This change in stiffness can affect the foam’s performance in a low velocity impact event. In this study, the compressive properties of new open-cell flexible polyurethane foam were compared to those obtained from aged open-cell polyurethane foam that had been in service for approximately 25 years. The foams tested had densities of 10 and 15 pcf. These low density foams provided a significant challenge to machine cylindrical compression specimens that were 1 “in height and 1” in diameter. Details of the machining process are discussed. The compressive properties obtained for both aged and new foams included testing at various strain rates (0.05. 0.10, 5 s-1) and temperatures (-54, RT, 74 °C). Results show that aging of flexible polyurethane foam does not have much of an effect on its compressive properties.
As an optimum energy-absorbing material system, polymeric foams are needed to dissipate the kinetic energy of an impact, while maintaining the impact force transferred to the protected object at a low level. Therefore, it is crucial to accurately characterize the load bearing and energy dissipation performance of foams at high strain rate loading conditions. There are certain challenges faced in the accurate measurement of the deformation response of foams due to their low mechanical impedance. In the present work, a non-parametric method is successfully implemented to enable the accurate assessment of the compressive constitutive response of rigid polymeric foams subjected to impact loading conditions. The method is based on stereovision high speed photography in conjunction with 3D digital image correlation, and allows for accurate evaluation of inertia stresses developed within the specimen during deformation time. Full-field distributions of stress, strain and strain rate are used to extract the local constitutive response of the material at any given location along the specimen axis. In addition, the effective energy absorbed by the material is calculated. Finally, results obtained from the proposed non-parametric analysis are compared with data obtained from conventional test procedures.
Lu, Wei-Yang; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.
Dynamic stress-strain response of rigid closed-cell polymeric foams is investigated in this work by subjecting high toughness polyurethane foam specimens to direct impact with different projectile velocities and quantifying their deformation response with high speed stereo-photography together with 3D digital image correlation. The measured transient displacement field developed in the specimens during high stain rate loading is used to calculate the transient axial acceleration field throughout the specimen. A simple mathematical formulation based on conservation of mass is also proposed to determine the local change of density in the specimen during deformation. By obtaining the full-field acceleration and density distributions, the inertia stresses at each point in the specimen are determined through a non-parametric analysis and superimposed on the stress magnitudes measured at specimen ends to obtain the full-field stress distribution. The process outlined above overcomes a major challenge in high strain rate experiments with low impedance polymeric foam specimens, i.e. the delayed equilibrium conditions can be quantified.
Experiments were performed to characterize the mechanical response of several different rigid polyurethane foams to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant damage, volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be extremely strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a phenomenological Unified Creep Plasticity Damage (UCPD) model was developed to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This paper includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. The higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.
The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digital image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. It is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
This report details a work in progress. We have attempted to calibrate and validate a Von Mises plasticity model with the Johnson-Cook failure criterion ( Johnson & Cook , 1985 ) against a set of experiments on various specimens of Al 6061-T651. As will be shown, the effort was not successful, despite considerable attention to detail. When the model was com- pared against axial-torsion experiments on tubes, it over predicted failure by 3 x in tension, and never predicted failure in torsion, even when the tube was twisted by 4 x further than the experiment. While this result is unfortunate, it is not surprising. Ductile failure is not well understood. In future work, we will explore whether more sophisticated material mod- els of plasticity and failure will improve the predictions. Selecting the appropriate advanced material model and interpreting the results of said model are not trivial exercises, so it is worthwhile to fully investigate the behavior of a simple plasticity model before moving on to an anisotropic yield surface or a similarly complicated model.
Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.
Recent experimental investigations show that most models are not able to capture the ductile behavior of metal alloys in the entire triaxiality range, especially at low triaxiality. Modelers are moving beyond stress triaxiality as the dominant indicator of material failure and developing constitutive models that incorporate shear into the evolution of the failure model. Available data that cover low triaxiality range are rare and a series of critical experiments is needed. Here, experiments of smooth thin as well as notched tubular specimens of Al6061-T651 under combined tension-torsion loading were conducted. This provides a very basic set of data for phenomenological models. A full-field deformation technique, digital image correlation (DIC), was applied to these tests to allow measurement of the field deformation, including the notched area. The microstructural features of the tested specimens were characterized to better understand the different failure mechanisms which led to ductility variation in the aluminum alloy.
Recent experimental investigations show that most models are not able to capture the ductile behavior of metal alloys in the entire triaxiality range, especially at low triaxiality. Modelers are moving beyond stress triaxiality as the dominant indicator of material failure and developing constitutive models that incorporate shear into the evolution of the failure model. Available data that cover low triaxiality range are rare and a series of critical experiments is needed. Here, experiments of smooth thin as well as notched tubular specimens of Al6061-T651 under combined tension-torsion loading were conducted. This provides a very basic set of data for phenomenological models. A full-field deformation technique, digital image correlation (DIC), was applied to these tests to allow measurement of the field deformation, including the notched area. The microstructural features of the tested specimens were characterized to better understand the different failure mechanisms which led to ductility variation in the aluminum alloy.
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.
This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.
This paper compares measurements made by Raman and infrared thermometry on a SOI (silicon on insulator) bent-beam thermal microactuator. Both techniques are noncontact and used to experimentally measure temperatures along the legs and on the shuttle of the thermal microactuators. Raman thermometry offers micron spatial resolution and measurement uncertainties of {+-}10 K; however, typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is much shorter; however, the spatial resolution is lower and calibrating the system for quantitative measurements is challenging. By obtaining thermal profiles on the same SOI thermal microactuator, the relative strengths and weaknesses of the two techniques are assessed.
Many ballistic fibers have been developed and utilized in soft body armors for military and law enforcement personnel. However, it is complex and challenging to evaluate the performance of ballistic resistance for the ballistic fibers. In applications, the fibers are subjected to high speed transverse impact by external objects. It is thus desirable to understand the dynamic response of the fibers under transverse impact. Transverse wave speed has been recognized a critical parameter for ballistic-resistant performance because a faster transverse wave speed dissipates the external impact energy more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) and gas gun to conduct high-speed impact on a Kevlar fiber bundle in the transverse direction at different velocities. The deformation of the fiber bundle was photographed with high-speed digital cameras. Additional sensitive transducers were employed to provide more quantitative information of the fiber response during such a transverse impact. The experimental results were used for quantitative verification of current analytical models.
This report describes a Laboratory Directed Research and Development (LDRD) project to use of synchrotron-radiation computed tomography (SRCT) data to determine the conditions and mechanisms that lead to void nucleation in rolled alloys. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) has provided SRCT data of a few specimens of 7075-T7351 aluminum plate (widely used for aerospace applications) stretched to failure, loaded in directions perpendicular and parallel to the rolling direction. The resolution of SRCT data is 900nm, which allows elucidation of the mechanisms governing void growth and coalescence. This resolution is not fine enough, however, for nucleation. We propose the use statistics and image processing techniques to obtain sub-resolution scale information from these data, and thus determine where in the specimen and when during the loading program nucleation occurs and the mechanisms that lead to it. Quantitative analysis of the tomography data, however, leads to the conclusion that the reconstruction process compromises the information obtained from the scans. Alternate, more powerful reconstruction algorithms are needed to address this problem, but those fall beyond the scope of this project.
Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate dynamic transverse loading on a glass fiber/epoxy composite beam. The high-speed DIC technique was employed to study the transverse wave propagation.
The ductile failure in metals has long been associated with void nucleation, growth and coalescence. Many micromechanics-based damage models were developed to study the effects of the voids sizes, shape and orientation to the nucleation, growth and coalescence of voids. However, the experimental methods to quantitatively validate these models were lacking. This paper is aimed to experimentally investigate at the microscale and nanoscale the effects of the shapes, sizes, orientation and density to the nucleation, growth and coalescence of voids and their relation to the ductility of the metal. In this work, notched tensile specimens with various radii were designed along different orientations. These specimens were tensile loaded up to different percentage of ultimate failure strain. The deformed specimens were then sectioned both along and perpendicular to the loading direction to microscopically study the voids size, shape and density. On the other hand, microtensile specimens were made out of these already deformed specimens. Using the advanced imaging capabilities of AFM and SEM combined with in-situ loading, the growth and coalescence of voids were in-situ studied at the microscale and nanoscale.
Nowadays composite materials have been extensively utilized in many military and industrial applications. For example, the newest Boeing 787 uses 50% composite (mostly carbon fiber reinforced plastic) in production. However, the weak delamination strength of fiber reinforced composites, when subjected to external impact such as ballistic impact, has been always potential serious threats to the safety of passengers. Dynamic fracture toughness is a critical indicator of the performance from delamination in such impact events. Quasi-static experimental techniques for fracture toughness have been well developed. For example, end notched flexure (ENF) technique, which is illustrated in Fig. 1, has become a typical method to determined mode-II fracture toughness for composites under quasi-static loading conditions. However, dynamic fracture characterization of composites has been challenging. This has resulted in conflictive and confusing conclusions in regard to strain rate effects on fracture toughness of composites.
Quasi-static experimental techniques for fracture toughness have been well developed and end notched flexure (ENF) technique has become a typical method to determined mode-II fracture toughness. ENF technique also has been implemented to high-rate testing using SHPB (Split Hopkinson Pressure Bar) technique for dynamic fracture characterization of composites. In general, the loading condition in dynamic characterization needs to be carefully verified that forces are balanced if same equations are used to calculate the fracture toughness. In this study, we employed highly sensitive polyvinylidene fluoride (PVDF) force transducers to measure the forces on the front wedge and back spans of the three-point bending setup. High rate digital image correlation (DIC) was also conducted to investigate the stress wave propagation during the dynamic loading. After careful calibration, the PVDF film transducer was made into small square pieces that are embedded on the front loading wedge and back supporting spans. Outputs from the three PVDF transducers as well as the strain gage on the transmission bar are recorded. The DIC result shows the transverse wave front propagates from the wedge towards the supports. If the crack starts to propagate before reaching force balance, numerical simulation, such as finite element analysis, should be implemented together with the dynamic experimental data to determine the mode-II fracture toughness.
Quasi-static experimental techniques for fracture toughness have been well developed and end notched flexure (ENF) technique has become a typical method to determined mode-II fracture toughness. ENF technique also has been implemented to high-rate testing using SHPB (Split Hopkinson Pressure Bar) technique for dynamic fracture characterization of composites. In general, the loading condition in dynamic characterization needs to be carefully verified that forces are balanced if same equations are used to calculate the fracture toughness. In this study, we employed highly sensitive polyvinylidene fluoride (PVDF) force transducers to measure the forces on the front wedge and back spans of the three-point bending setup. High rate digital image correlation (DIC) was also conducted to investigate the stress wave propagation during the dynamic loading. After careful calibration, the PVDF film transducer was made into small square pieces that are embedded on the front loading wedge and back supporting spans. Outputs from the three PVDF transducers as well as the strain gage on the transmission bar are recorded. The DIC result shows the transverse wave front propagates from the wedge towards the supports. If the crack starts to propagate before reaching force balance, numerical simulation, such as finite element analysis, should be implemented together with the dynamic experimental data to determine the mode-II fracture toughness.
The mechanical properties of some materials (Cu, Ni, Ag, etc.) have been shown to develop strong dependence on the geometric dimensions, resulting in a size effect. Several theories have been proposed to model size effects, but have been based on very few experiments conducted at appropriate scales. Some experimental results implied that size effects are caused by increasing strain gradients and have been used to confirm many strain gradient theories. On the other hand, some recent experiments show that a size effect exists in the absence of strain gradients. This report describes a brief analytical and experimental study trying to clarify the material and experimental issues surrounding the most influential size-effect experiments by Fleck et al (1994). This effort is to understand size effects intended to further develop predictive models.
The foam material of interest in this investigation is a rigid closed-cell polyurethane foam PMDI with a nominal density of 20 pcf (320 kg/m3). Three separate types of compression experiments were conducted on foam specimens. The heterogeneous deformation of foam specimens and strain concentration at the foam-steel interface were obtained using the 3-dimensional digital image correlation (3D-DIC) technique. These experiments demonstrated that the 3D-DIC technique is able to obtain accurate and full-field large deformation of foam specimens, including strain concentrations. The experiments also showed the effects of loading configurations on deformation and strain concentration in foam specimens. These DIC results provided experimental data to validate the previously developed viscoplastic foam model (VFM). In the first experiment, cubic foam specimens were compressed uniaxially up to 60%. The full-field surface displacement and strain distributions obtained using the 3D-DIC technique provided detailed information about the inhomogeneous deformation over the area of interest during compression. In the second experiment, compression tests were conducted for cubic foam specimens with a steel cylinder inclusion, which imitate the deformation of foam components in a package under crush conditions. The strain concentration at the interface between the steel cylinder and the foam specimen was studied in detail. In the third experiment, the foam specimens were loaded by a steel cylinder passing through the center of the specimens rather than from its end surface, which created a loading condition of the foam components similar to a package that has been dropped. To study the effects of confinement, the strain concentration and displacement distribution over the defined sections were compared for cases with and without a confinement fixture.
Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grade for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.
Resist substrates used in the LIGA process must provide high initial bond strength between the substrate and resist, little degradation of the bond strength during x-ray exposure, acceptable undercut rates during development, and a surface enabling good electrodeposition of metals. Additionally, they should produce little fluorescence radiation and give small secondary doses in bright regions of the resist at the substrate interface. To develop a new substrate satisfying all these requirements, we have investigated secondary resist doses due to electrons and fluorescence, resist adhesion before exposure, loss of fine features during extended development, and the nucleation and adhesion of electrodeposits for various substrate materials. The result of these studies is a new anodized aluminum substrate and accompanying methods for resist bonding and electrodeposition. We demonstrate successful use of this substrate through all process steps and establish its capabilities via the fabrication of isolated resist features down to 6 {micro}m, feature aspect ratios up to 280 and electroformed nickel structures at heights of 190 to 1400 {micro}m. The minimum mask absorber thickness required for this new substrate ranges from 7 to 15 {micro}m depending on the resist thickness.
This paper describes the analyses and the experimental mechanics program to support the National Aeronautics and Space Administration (NASA) investigation of the Shuttle Columbia accident. A synergism of the analysis and experimental effort is required to insure that the final analysis is valid - the experimental program provides both the material behavior and a basis for validation, while the analysis is required to insure the experimental effort provides behavior in the correct loading regime. Preliminary scoping calculations of foam impact onto the Shuttle Columbia's wing leading edge determined if enough energy was available to damage the leading edge panel. These analyses also determined the strain-rate regimes for various materials to provide the material test conditions. Experimental testing of the reinforced carbon-carbon wing panels then proceeded to provide the material behavior in a variety of configurations and strain-rates for flown or conditioned samples of the material. After determination of the important failure mechanisms of the material, validation experiments were designed to provide a basis of comparison for the analytical effort. Using this basis, the final analyses were used for test configuration, instrumentation location, and calibration definition in support of full-scale testing of the panels in June 2003. These tests subsequently confirmed the accident cause.
The effects of chemical aging on the behavior of carbon black filled rubber were investigated by two types of tests, aging under no strain and aging under a constant strain. A slight modification of the damage-based theory of Segalman, used previously on unaged samples, was found to be consistent with the experimental data.