Publications

Results 1–50 of 131

Search results

Jump to search filters

Hypersonic Fluid–Structure Interaction on a Cone–Slice–Ramp Geometry

AIAA Journal

Pandey, Anshuman; Casper, Katya M.; Beresh, Steven J.; Bhakta, Rajkumar B.; Spillers, Russell

Fluid–structure interactions were measured between a representative control surface and the hypersonic flow deflected by it. The control surface is simplified as a spanwise finite ramp placed on a longitudinal slice of a cone. The front surface of the ramp contains a thin panel designed to respond to the unsteady fluid loading arising from the shock-wave/boundary-layer interactions. Experiments were conducted at Mach 5 and Mach 8 with ramps of different angles. High-speed schlieren captured the unsteady flow dynamics and accelerometers behind the thin panel measured its structural response. Panel vibrations were dominated by natural modes that were excited by the broadband aerodynamic fluctuations arising in the flowfield. However, increased structural response was observed in two distinct flow regimes: 1) attached or small separation interactions, where the transitional regime induced the strongest panel fluctuations. This was in agreement with the observation of increased convective undulations or bulges in the separation shock generated by the passage of turbulent spots, and 2) large separated interactions, where shear layer flapping in the laminar regime produced strong panel response at the flapping frequency. In addition, panel heating during the experiment caused a downward shift in its natural mode frequencies.

More Details

Carbon Dioxide Seeding System for Enhanced Rayleigh Scattering in Sandia’s Hypersonic Wind Tunnel

AIAA AVIATION 2022 Forum

Saltzman, Ashley J.; Beresh, Steven J.; Casper, Katya M.; Denk, Brian; Bhakta, Rajkumar B.; De Zetter, Marie; Spillers, Russell

This work describes the development and testing of a carbon dioxide seeding system for the Sandia Hypersonic Wind Tunnel. The seeder injects liquid carbon dioxide into the tunnel, which evaporates in the nitrogen supply line and then condenses during the nozzle expansion into a fog of particles that scatter light via Rayleigh scattering. A planar laser scattering (PLS) experiment is conducted in the boundary layer and wake of a cone at Mach 8 to evaluate the success of the seeder. Second-mode waves and turbulence transition were well-visualized by the PLS in the boundary layer and wake. PLS in the wake also captured the expansion wave over the base and wake recompression shock. No carbon dioxide appears to survive and condense in the boundary layer or wake, meaning alternative seeding methods must be explored to extract measurements within these regions. The seeding system offers planar flow visualization opportunities and can enable quantitative velocimetry measurements in the future, including filtered Rayleigh scattering.

More Details

Aero-Optical Measurements of a Mach 8 Boundary Layer

AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021

Lynch, Kyle P.; Spillers, Russell; Miller, Nathan E.; Guildenbecher, Daniel; Gordeyev, Stanislav

Measurements are presented of the aero-optic distortion produced by a Mach 8 turbulent boundary layer in the Sandia Hypersonic Wind Tunnel. Flat optical inserts installed in the test section walls enabled a double-pass arrangement of a collimated laser beam. The distortion of this beam was imaged by a high-speed Shack-Hartmann sensor at a sampling rate of up to 1 MHz. Analysis is performed using two processing methods to extract the aero-optic distortion from the data. A novel de-aliasing algorithm is proposed to extract convective-only spectra and is demonstrated to correctly quantify the physical spectra even in case of relatively low sampling rates. The results are compared with an existing theoretical model, and it is shown that this model under-predicts the experimentally measured distortions regardless of the processing method used. Possible explanations for this discrepancy are presented. The presented results represent to-date the highest Mach number for which aero-optic boundary layer distortion measurements are available.

More Details

Extending the frequency limits of “postage-stamp piv” to mhz rates

AIAA Scitech 2020 Forum

Beresh, Steven J.; Spillers, Russell; Soehnel, Melissa; Spitzer, Seth M.

Two techniques have extended the effective frequency limits of postage-stamp PIV, in which a pulse-burst laser and very small fields of view combine to achieve high repetition rates. An interpolation scheme reduced measurement noise, raising the effective frequency response of previous 400-kHz measurements from about 120 kHz to 200 kHz. The other technique increased the PIV acquisition rate to very nearly MHz rates (990 kHz) by using a faster camera. Charge leaked through the camera shift register at these framing rates but this was shown not to bias the measurements. The increased framing rate provided oversampled data and enabled use of multi-frame correlation algorithms for a lower noise floor, increasing the effective frequency response to 240 kHz where the interrogation window size begins to spatially filter the data. Good agreement between the interpolation technique and the MHz-rate PIV measurements was established. The velocity spectra suggest turbulence power-law scaling in the inertial subrange steeper than the theoretical-5/3 scaling, attributed to an absence of isotropy.

More Details

Hypersonic wake measurements behind a slender cone using fleet velocimetry

AIAA Aviation 2019 Forum

Zhang, Yibin; Richardson, Daniel; Beresh, Steven J.; Casper, Katya M.; Soehnel, Melissa; Henfling, John F.; Spillers, Russell

Femtosecond Laser Electronic Excitation Tagging (FLEET) is used to measure velocity flowfields in the wake of a sharp 7◦ half-angle cone in nitrogen at Mach 8, over freestream Reynolds numbers from 4.3∗106 /m to 13.8∗106 /m. Flow tagging reveals expected wake features such as the separation shear layer and two-dimensional velocity components. Frequency-tripled FLEET has a longer lifetime and is more energy efficient by tenfold compared to 800 nm FLEET. Additionally, FLEET lines written with 267 nm are three times longer and 25% thinner than that written with 800 nm at a 1 µs delay. Two gated detection systems are compared. While the PIMAX 3 ICCD offers variable gating and fewer imaging artifacts than a LaVision IRO coupled to a Photron SA-Z, its slow readout speed renders it ineffective for capturing hypersonic velocity fluctuations. FLEET can be detected to 25 µs following excitation within 10 mm downstream of the model base, but delays greater than 4 µs have deteriorated signal-to-noise and line fit uncertainties greater than 10%. In a hypersonic nitrogen flow, exposures of just several hundred nanoseconds are long enough to produce saturated signals and/or increase the line thickness, thereby adding to measurement uncertainty. Velocity calculated between the first two delays offer the lowest uncertainty (less than 3% of the mean velocity).

More Details

Time-resolved planar velocimetry of the supersonic wake of a wall-mounted hemisphere

AIAA Journal

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

Time-resolved particle image velocimetry was conducted at 40 kHz using a pulse-burst laser in the supersonic wake of a wall-mounted hemisphere. Velocity fields suggest a recirculation region with two lobes, in which flow moves away from the wall near the centerline and recirculates back toward the hemisphere off the centerline, contrary to transonic configurations. Spatio-temporal cross-correlations and conditional ensemble averages relate the characteristic behavior of the unsteady shock motion to the flapping of the shear layer. At Mach 1.5, oblique shocks develop, associated with vortical structures in the shear layer and convect downstream in tandem; a weak periodicity is observed. Shock motion at Mach 2.0 appears somewhat different, wherein multiple weak disturbances propagate from shear-layer turbulent structures to form an oblique shock that ripples as these vortices pass by. Bifurcated shock feet coalesce and break apart without evident periodicity. Power spectra show a preferred frequency of shear-layer flapping and shock motion for Mach 1.5, but at Mach 2.0, a weak preferred frequency at the same Strouhal number of 0.32 is found only for oblique shock motion and not shear-layer unsteadiness.

More Details

Spatial distribution of pressure resonance in compressible cavity flow

Journal of Fluid Mechanics

Casper, Katya M.; Wagner, Justin L.; Beresh, Steven J.; Spillers, Russell; Henfling, John F.; Dechant, Lawrence

The development of the unsteady pressure field on the floor of a rectangular cavity was studied at Mach 0.9 using high-frequency pressure-sensitive paint. Power spectral amplitudes at each cavity resonance exhibit a spatial distribution with a streamwise-oscillatory pattern; additional maxima and minima appear as the mode number is increased. This spatial distribution also appears in the propagation velocity of modal pressure disturbances. This behaviour was tied to the superposition of a downstream-propagating shear-layer disturbance and an upstream-propagating acoustic wave of different amplitudes and convection velocities, consistent with the classical Rossiter model. The summation of these waves generates a net downstream-travelling wave whose amplitude and phase velocity are modulated by a fixed envelope within the cavity. This travelling-wave interpretation of the Rossiter model correctly predicts the instantaneous modal pressure behaviour in the cavity. Subtle spanwise variations in the modal pressure behaviour were also observed, which could be attributed to a shift in the resonance pattern as a result of spillage effects at the edges of the finite-width cavity.

More Details

Hypersonic Fluid-Structure Interactions on a Slender Cone

AIAA Journal

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Hunter, Patrick; Spitzer, Seth M.

Fluid-structure interactions were studies on a 7° half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Here, under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration.

More Details

Influence of the fluctuating velocity field on the surface pressures in a jet/fin interaction

Journal of Spacecraft and Rockets

Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Pruett, Brian

The mechanism by which aerodynamic effects of jet/fin interaction arise from the flow structure of a jet in crossflow is explored using particle image velocimetry measurements of the crossplane velocity field as it impinges on a downstream fin instrumented with high-frequency pressure sensors. A Mach 3.7 jet issues into a Mach 0.8 crossflow from either a normal or inclined nozzle, and three lateral fin locations are tested. Conditional ensemble-averaged velocity fields are generated based upon the simultaneous pressure condition. Additional analysis relates instantaneous velocity vectors to pressure fluctuations. The pressure differential across the fin is driven by variations in the spanwise velocity component, which substitutes for the induced angle of attack on the fin. Pressure changes at the fin tip are strongly related to fluctuations in the streamwise velocity deficit, wherein lower pressure is associated with higher velocity and vice versa. The normal nozzle produces a counter-rotating vortex pair that passes above the fin, and pressure fluctuations are principally driven by the wall horseshoe vortex and the jet wake deficit. The inclined nozzle produces a vortex pair that impinges the fin and yields stronger pressure fluctuations driven more directly by turbulence originating from the jet mixing.

More Details

Hypersonic fluid-structure interactions on a slender cone

AIAA Aerospace Sciences Meeting, 2018

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Hunter, Patrick; Spitzer, Seth M.

Fluid-structure interactions were studied on a 7◦ half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration. When the spot generation frequency matched a structural natural frequency of the panel, resonance would occur and responses over 200 times greater than under a laminar boundary layer were obtained. At Mach 5 and 8 under noisy flow conditions, natural transition driven by the wind-tunnel acoustic noise dominated the panel response. An elevated vibrational response was observed during transition at frequencies corresponding to the distribution of turbulent spots in the transitional flow. Once turbulent flow developed, the structural response dropped because the intermittent forcing from the spots no longer drove panel vibration.

More Details

Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity

AIAA Journal

Beresh, Steven J.; Wagner, Justin L.; Casper, Katya M.; Demauro, Edward P.; Henfling, John F.; Spillers, Russell

Pulse-burst particle image velocimetry has been used to acquire time-resolved data at 37.5 kHz of the flow over a finite-width rectangular cavity at Mach 0.8. Power spectra of the particle image velocimetry data reveal four resonance modes that match the frequencies detected simultaneously using high-frequency wall pressure sensors, but whose magnitudes exhibit spatial dependence throughout the cavity. Spatiotemporal cross correlations of velocity to pressure were calculated after bandpass filtering for specific resonance frequencies. Cross-correlation magnitudes express the distribution of resonance energy, revealing local maxima and minima at the edges of the shear layer attributable to wave interference between downstream-and upstream-propagating disturbances. Turbulence intensities were calculated using a triple decomposition and are greatest in the core of the shear layer for higher modes, where resonant energies ordinarily are lower. Most of the energy for the lowest mode lies in the recirculation region and results principally from turbulence rather than resonance. Together, the velocity-pressure cross correlations and the triple-decomposition turbulence intensities explain the sources of energy identified in the spatial distributions of power spectra amplitudes.

More Details

Pulse-burst PIV of the supersonic wake of a wall-mounted hemisphere

47th AIAA Fluid Dynamics Conference, 2017

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

Time-resolved particle image velocimetry (PIV) was conducted at 40 kHz using a pulse-burst laser in the supersonic wake of a wall-mounted hemisphere. Velocity fields suggest a recirculation region with two lobes in which flow moves away from the wall near centerline and recirculates back towards the hemisphere off centerline. Spatio-temporal cross-correlations and conditional ensemble averages relate the characteristic behavior of the unsteady shock motion to the flapping of the shear layer. At Mach 1.5, oblique shocks form associated with vortical structures in the shear layer and convect downstream in tandem; a weak periodicity is observed. Shock motion at Mach 2.0 appears somewhat different, wherein multiple weak disturbances propagate from shear layer turbulent structures to form an oblique shock that ripples as these vortices pass by. Bifurcated shock feet coalesce and break apart without evident periodicity. Power spectra show a preferred frequency of shear layer flapping and shock motion for Mach 1.5, but at Mach 2.0 a weak preferred frequency is found only for the oblique shock motion and not the shear layer unsteadiness.

More Details

Study of fluid-structure interactions on a Tunable store in complex cavity flow

47th AIAA Fluid Dynamics Conference, 2017

Casper, Katya M.; Wagner, Justin L.; Beresh, Steven J.; Spillers, Russell; Henfling, John F.

Fluid-structure interactions were studied on a store with tunable structural natural frequencies in complex cavity flow. Different leading edge geometries, doors, and internal inserts were used to generate cavity pressure fields that were more representative of an actual aircraft bay. The store loading and response was characterized using point pressure and accelerometer measurements. These data were supplemented with high-frequency pressure-sensitive paint applied to both the store and to the cavity floor to capture the three-dimensional nature of the pressure field in the complex configurations. The natural frequencies of the store were then changed to allow a systematic study of mode matching between the structural natural frequencies and the dominant cavity tone frequencies. In the complex cavities, the store responded to the cavity resonant tones not only in the streamwise and wall-normal directions, but also the spanwise direction. That spanwise response to cavity tones was not observed for previous studies in a simple rectangular cavity, because the flow across the store width in the spanwise direction was uniform. This different behavior highlights the importance of using a representative bay geometry for prediction of the structural response of a store in a flight environment.

More Details

“Postage-stamp PIV:” Small velocity fields at 400 kHz for turbulence spectra measurements

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Spitzer, Seth M.

Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4,000 frames, but for an array of only 128 × 120 pixels, giving the moniker of “postage-stamp PIV.” The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 100 kHz at which point a noise floor emerges dependent upon the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. One is the well-known inertial subrange with a slope of -5/3 at high frequencies. The other displays a -1 power-law dependence for a decade of mid-range frequencies corresponding to the energetic eddies measured by PIV, which appears to have been previously unrecognized for high-speed free shear flows.

More Details
Results 1–50 of 131
Results 1–50 of 131