Publications

Results 101–131 of 131

Search results

Jump to search filters

Simultaneous pressure measurements and high-speed schlieren imaging of disturbances in a transitional hypersonic boundary layer

43rd Fluid Dynamics Conference

Casper, Katya M.; Beresh, Steven J.; Wagnild, Ross M.; Henfling, John F.; Spillers, Russell; Pruett, Brian

High-frequency pressure sensors were used in conjunction with a high-speed schlieren system to study the growth and breakdown of boundary-layer disturbances into turbulent spots on a 7° cone in the Sandia Hypersonic Wind Tunnel. At Mach 5, intermittent low-frequency disturbances were observed in the schlieren videos. High-frequency secondmode wave packets would develop within these low-frequency disturbances and break down into isolated turbulent spots surrounded by an otherwise smooth, laminar boundary layer. Spanwise pressure measurements showed that these packets have a narrow spanwise extent before they break down. The resulting turbulent fluctuations still had a streaky structure reminiscent of the wave packets. At Mach 8, the boundary layer was dominated by secondmode instabilities that extended much further in the spanwise direction before breaking down into regions of turbulence. The amplitude of the turbulent pressure fluctuations was much lower than those within the second-mode waves. These turbulent patches were surrounded by waves as opposed to the smooth laminar flow seen at Mach 5. At Mach 14, second-mode instability wave packets were also observed. Theses waves had a much lower frequency and larger spanwise extent compared to lower Mach numbers. Only low freestream Reynolds numbers could be obtained, so these waves did not break down into turbulence.

More Details

Turbulence of a fin trailing vortex in subsonic compressible flow

AIAA Journal

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

Stereoscopic Particle Image Velocimetry data of a trailing vortex shed from a tapered fin installed on a wind-tunnel wall have been analyzed to provide turbulent statistics. After correcting for the effects of vortex meander, the radial and azimuthal turbulent normal stresses are smallest at the vortex center, reaching a maximum around its periphery to produce an annulus of turbulence. Conversely, the streamwise turbulent stress peaks at the vortex center. The ringed turbulent structure is consistent with rotation stabilizing the flow in the vortex core, whereas a fluctuating axial velocity contributes to vortex decay. All three turbulent normal stresses decay with downstream distance. Turbulent shear stresses also decay with downstream distance but possess a relatively small magnitude, suggesting minimal coupling between turbulent velocity components. The vortex turbulence is strongly anisotropic in a manner that varies greatly with spatial position. As the vortex strength is reduced, the axial turbulent normal stress diminishes more sharply than the two cross-plane turbulent normal stresses, possibly because the latter components are influenced by external turbulence spiraling towards the vortex core. The turbulent shear stresses do not show discernable reductions in magnitude with lower vortex strength.

More Details

Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer

Physics of Fluids

Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Pruett, Brian

Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the ω-1 dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized ω2 dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the ω-1 region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low. © 2011 American Institute of Physics.

More Details

Improved measurements of large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer

41st AIAA Fluid Dynamics Conference and Exhibit

Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Pruett, Brian

Data have been acquired from a spanwise array of fluctuating wall pressure sensors beneath a wind tunnel wall boundary layer at Mach 2, then invoking Taylor's Hypothesis allows the temporal signals to be converted into a spatial map of the wall pressure field. Improvements to the measurement technique were developed to establish the veracity of earlier tentative conclusions. An adaptive filtering scheme using a reference sensor was implemented to cancel effects of wind tunnel acoustic noise and vibration. Coherent structures in the pressure fields were identified using an improved thresholding algorithm that reduced the occurrence of broken contours and spurious signals. Analog filters with sharper frequency cutoffs than digital filters produced signals of greater spectral purity. Coherent structures were confirmed in the fluctuating wall pressure field that resemble similar structures known to exist in the velocity field, in particular by exhibiting a spanwise meander and merging of events. However, the pressure data lacked the common spanwise alternation of positive and negative events found in velocity data, and conversely demonstrated a weak positive correlation in the spanwise direction.

More Details

Very-large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer

Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Pruett, Brian

Previous wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer, which essentially are flat at low frequency and do not exhibit the theorized {psi}{sup 2} dependence. The flat portion of the spectrum extends over two orders of magnitude and represents structures reaching at least 100 {delta} in scale, raising questions about their physical origin. The spatial coherence required over these long lengths may arise from very-large-scale structures that have been detected in turbulent boundary layers due to groupings of hairpin vortices. To address this hypothesis, data have been acquired from a dense spanwise array of fluctuating wall pressure sensors, then invoking Taylor's Hypothesis and low-pass filtering the data allows the temporal signals to be converted into a spatial map of the wall pressure field. This reveals streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction and exhibiting spanwise alternation of positive and negative events that meander somewhat in tandem. As the low-pass filter cutoff is lowered, the fluctuating pressure magnitude of the coherent structures diminishes while their length increases.

More Details

Pressure power spectra beneath a supersonic turbulent boundary layer

Beresh, Steven J.; Henfling, John F.; Spillers, Russell; Pruett, Brian

Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining signals from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the {omega}{sup -1} dependence for fluctuations within the logarithmic region of the boundary layer, but are essentially flat at low frequency and do not exhibit the theorized {omega}{sup 2} dependence. Variations in the Reynolds number or streamwise measurement location collapse to a single curve for each Mach number when normalized by outer flow variables. Normalization by inner flow variables is successful for the {omega}{sup -1} region but less so for lower frequencies. A comparison of the pressure fluctuation intensities with fifty years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes. These trends suggest that much of the historical compressible database may be biased low, leading to the failure of several semi-empirical predictive models to accurately represent the power spectra acquired during the present experiments.

More Details

Measurement of fluctuating wall pressures beneath a supersonic turbulent boundary layer

48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

Wind tunnel experiments up to Mach 3 have provided fluctuating wall pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz to help reconcile conflicts in the historical data. Data were acquired using piezoresistive silicon pressure transducers effective at low- and mid-range frequencies, supplemented by piezoelectric quartz sensors to detect high frequency events, and combined into a single curve describing the wall pressure spectrum. Attenuation at high frequencies due to limited spatial resolution was a dominant problem, but the well-known Corcos correction successfully recovered the true amplitude within its range of applicability, revealing the ω-1 dependence for fluctuations within the logarithmic region of the boundary layer. Wind tunnel noise and vibration were removed by a noise cancellation algorithm based upon adaptive filtering, showing the power spectra are essentially flat at low frequency and do not exhibit the theorized ω2 dependence. The integrated pressure fluctuation intensities are appreciably greater than the historical supersonic database when data corrections are applied, but consistent when neglected, suggesting that past experiments may be biased low.

More Details

Interaction of a fin trailing vortex with a downstream control surface

Journal of Spacecraft and Rockets

Beresh, Steven J.; Smith, Justin; Henfling, John F.; Grasser, Thomas; Spillers, Russell

A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.

More Details

Interaction of a fin trailing vortex with a downstream control surface

Journal of Spacecraft and Rockets

Beresh, Steven J.; Smith, Justin; Henfling, John F.; Grasser, Thomas; Spillers, Russell

A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.

More Details

Meander of a fin trailing vortex measured using particle image velocimetry

47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex. Trends with downstream distance suggest meander begins on the fin surface, prior to vortex shedding. Mean vortex properties are unaltered when considered in the meandering reference frame, apparently because turbulent fluctuations in the vortex shape and strength dominate positional variations. Conversely, a large peak of artificial turbulent kinetic energy is found centered in the vortex core, which almost entirely disappears when corrected for meander, though some turbulence remains near the core radius. Turbulence originating at the wind tunnel wall was shown to contribute to vortex meander by energizing the incoming boundary layer using low-profile vortex generators and observing a substantial increase in the meander amplitude while greater turbulent kinetic energy penetrates the vortex core. An explanatory mechanism has been hypothesized, in which the vortex initially forms at the apex of the swept leading edge of the fin where it is exposed to turbulent fluctuations within the wind tunnel wall boundary layer, introducing an instability into the incipient vortex core.

More Details

Formation of a fin trailing vortex in undisturbed and interacting flows

39th AIAA Fluid Dynamics Conference

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

An experiment using fins mounted on a wind tunnel wall has examined the proposition that the interaction between axially-separated aerodynamic control surfaces fundamentally results from an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin. Particle Image Velocimetry data captured on the surface of a single fin show the formation of the trailing vortex first as a leading-edge vortex, then becoming a tip vortex as it propagates to the fin's spanwise edge. Data acquired on the downstream fin surface in the presence of a trailing vortex shed from an upstream fin may remove this impinging vortex by subtracting its mean velocity field as measured in single-fin experiments, after which the vortex forming on the downstream fin's leeside becomes evident. The properties of the downstream fin's lifting vortex appear to be determined by the total angle of attack imposed upon it, which is a combination of its physical fin cant and the angle of attack induced by the impinging vortex, and are consistent with those of a single fin at equivalent angle of attack.

More Details

Force and moment measurements of a transonic fin-wake interaction

46th AIAA Aerospace Sciences Meeting and Exhibit

Smith, Justin; Henfling, John F.; Beresh, Steven J.; Grasser, Thomas; Spillers, Russell

Force and moment measurements have been made on an instrumented subscale fin model at transonic speeds in Sandia's Trisonic Wind Tunnel to ascertain the effects of Mach number and angle of attack on the interaction of a trailing vortex with a downstream control surface. Components of normal force, bending moment, and hinge moment were measured on an instrumented fin downstream of an identical fin at Mach numbers between 0.85 and 1.24, and combinations of angles of attack between -5° and 10° for both fins. The primary influence of upstream fin deflection is to shift the downstream fin's forces in a direction consistent with the vortex-induced angle of attack on the downstream fin. Secondary non-linear effects of vortex lift were found to increase the slopes of normal force and bending moment coefficients when plotted versus fin deflection angle. This phenomenon was dependent upon Mach number and the angles of attack of both fins. The hinge moment coefficient was also influenced by the vortex lift as the center of pressure was pushed aft with increased Mach number and total angle of attack.

More Details

Planar velocimetry of a fin trailing vortex in subsonic compressible flow

38th AIAA Fluid Dynamics Conference and Exhibit

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

A sub-scale experiment has been conducted to study the trailing vortex shed from a tapered fin installed on a wind tunnel wall to represent missile configurations. Stereoscopic particle image velocimetry measurements have been acquired in the near-field for several locations downstream of the fin tip and at different fin angles of attack. The vortex's tangential velocity is found to decay with downstream distance while its radius increases, but the vortex core circulation remains constant. Circulation and tangential velocity rise greatly for increased fin angle of attack, but the radius is approximately constant or slightly decreasing. The vortex axial velocity is always a deficit, whose magnitude diminishes with downstream distance and smaller angle of attack. No variation with Mach number can be discerned in the normalized velocity data. Vortex roll-up is observed to be largely complete by about four root chord lengths downstream of the fin trailing edge. Prior to this point, the vortex is asymmetric in the tangential velocity but the core radius stays nearly constant. Vortical rotation draws low-speed turbulent fluid from the wind tunnel wall boundary layer into the vortex core, which appears to hasten vortex decay and produce a larger axial velocity deficit than might be expected. Self-similarity of the vortex is established even while it is still rolling up. Attempts to normalize vortex properties by the fin's lift coefficient proved unsuccessful.

More Details

Interaction of a fin trailing vortex with a downstream control surface

46th AIAA Aerospace Sciences Meeting and Exhibit

Beresh, Steven J.; Smith, Justin; Henfling, John F.; Grasser, Thomas; Spillers, Russell

A sub-scale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data are collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic Particle Image Velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows that the vortex strength increases markedly with upstream fin angle of attack, though even an uncanted fin generates a noticeable wake. No variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry suggest that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant.

More Details

Penetration of a transverse supersonic jet into a subsonic compressible crossflow

Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.; Spillers, Russell

Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M{sub {infinity}} and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M{sub {infinity}} remained constant. Jet trajectories derived independently using the maxima of each of these two velocity components are not identical, but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M{sub {infinity}}, but at two lower M{sub {infinity}} the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall.

More Details
Results 101–131 of 131
Results 101–131 of 131