Trust Maturity Model for AI Systems
Abstract not provided.
Abstract not provided.
Uncertainty in severe accident evolution and outcome is driven by event bifurcations that represent distinctive challenges to defensive layers and tend to promote the emergence of discrete classes of core damage and accident risk. This discrete set of "attractor" states arise from the complex networks of competing physical phenomena and conditional event cascades occurring as the overall system degrades – a process that yields increasing degrees of freedom and accident progression pathways. Characterization of these event spaces has proven elusive to more traditional data interrogation methods, but proves tractable by application of more advanced data collection and machine learning approaches. Through application of these approaches we demonstrate a conceptual framework that enables real-time/robust, risk-informed decision-making support to improve accident mitigation and encourage “graceful exits” during low probability, extreme events limiting accident consequences. In this analysis, we simulated over 8,000 short-term station blackout (STSBO) accidents with the state-of-the-art integral severe accident code, MELCOR, and demonstrate the potential for ML approaches to predict simulation outcomes. We chose to pair ML tools with interpretable and mechanistic event trees for the considered STSBO accident space to predict the likelihood of future event paths along the tree. In addition to the current state of the system, we use information from recent trajectories of temperature, pressure, and other physical features, combining both the current state and past trajectories to forecast future event paths. Finally, we simulate the random injection of variable amounts of water to quantify the efficacy of available actions at reducing risks along the many branches in the event tree. We identify scenarios and windows of opportunity to mitigate risk as well as scenarios in which such actions are unlikely to alter the accident end-state.