Publications

Results 101–121 of 121

Search results

Jump to search filters

Characterization of Hydraulic and Ignition Phenomena of Pressurized Water Reactor Fuel Assemblies

Durbin, S.G.; Lindgren, Eric R.

This report summarizes the strategy and preparations for the first phase in the pressurized water reactor (PWR) ignition experimental program. During this phase, a single full length, prototypic 17×17 PWR fuel assembly will simulate a severe loss-of-coolantaccident in the spent fuel pool whereby the fuel is completely uncovered and heats up until ignition of the cladding occurs. Electrically resistive heaters with zircaloy cladding will substitute for the spent nuclear fuel. The assembly will be placed in a single pool cell with the outer wall well insulated. This boundary condition will imitate the situation of an assembly surrounded by assemblies of similar offload age.

More Details

Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement

Lindgren, Eric R.; Durbin, S.G.

This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

More Details

Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident

Lindgren, Eric R.

The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

More Details

Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds

Proposed for publication in Sensors Journal.

Ho, Clifford K.; Lindgren, Eric R.; Rawlinson, Kim S.; Mcgrath, Lucas M.; Wright, Jerome L.

This paper describes the development of a surface-acoustic-wave (SAW) sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene), which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

More Details

Electrokinetic demonstration at the unlined chromic acid pit

Lindgren, Eric R.

Heavy-metal contaminated soils are a common problem at Department of Energy (DOE)-operated sites and privately owned facilities throughout the nation. One emerging technology which can remove heavy metals from soil in situ is electrokinetics. To conduct electrokinetic (EK) remediation, electrodes are implanted into the ground, and a direct current is imposed between the electrodes. Metal ions dissolved in the soil pore water migrate towards an electrode where they can be removed. The electrokinetic program at Sandia National Laboratories (SNL) has been focusing on electrokinetic remediation for unsaturated soils. A patent was awarded for an electrokinetic electrode system designed at SNL for applications to unsaturated soils. Current research described in this report details an electrokinetic remediation field demonstration of a chromium plume that resides in unsaturated soil beneath the SNL Chemical Waste Landfill (CWL). This report describes the processes, site investigation, operation and monitoring equipment, testing procedures, and extraction results of the electrokinetic demonstration. This demonstration successfully removed chromium contamination in the form of chromium(VI) from unsaturated soil at the field scale. After 2700 hours of operation, 600 grams of Cr(VI) was extracted from the soil beneath the SNL CWL in a series of thirteen tests. The contaminant was removed from soil which has moisture contents ranging from 2 to 12 weight percent. This demonstration was the first EK field trial to successfully remove contaminant ions from and soil at the field scale. Although the new patented electrode system was successful in removing an anionic contaminant (i.e., chromate) from unsaturated sandy soil, the electrode system was a prototype and has not been specifically engineered for commercialization. A redesign of the electrode system as indicated by the results of this research is suggested for future EK field trials.

More Details

Electrokinetic demonstration at Sandia National Laboratories: Use of transference numbers for site characterization and process evaluation

Lindgren, Eric R.

Electrokinetic remediation is generally an in situ method using direct current electric potentials to move ionic contaminants and/or water to collection electrodes. The method has been extensively studied for application in saturated clayey soils. Over the past few years, an electrokinetic extraction method specific for sandy, unsaturated soils has been developed and patented by Sandia National Laboratories. A RCRA RD&D permitted demonstration of this technology for the in situ removal of chromate contamination from unsaturated soils in a former chromic acid disposal pit was operated during the summer and fall of 1996. This large scale field test represents the first use of electrokinetics for the removal of heavy metal contamination from unsaturated soils in the United States and is part of the US EPA Superfund Innovative Technology Evaluation (SITE) Program. Guidelines for characterizing a site for electrokinetic remediation are lacking, especially for applications in unsaturated soil. The transference number of an ion is the fraction of the current carried by that ion in an electric field and represents the best measure of contaminant removal efficiency in most electrokinetic remediation processes. In this paper we compare the transference number of chromate initially present in the contaminated unsaturated soil, with the transference number in the electrokinetic process effluent to demonstrate the utility of evaluating this parameter.

More Details

Conceptual models of VOC migration in the vadose zone using soil gas sampling data collected from existing ground water monitoring wells

Lindgren, Eric R.

Choosing the appropriate conceptual model of contaminant transport from a hazardous waste site to the underlying aquifer will assist in designing efficient site investigation and remediation strategies. One method of collecting data to support a conceptual model is by comparing ground water sampling results to soil gas sampling results that are collected through existing monitoring wells. This underutilized data collection technique is quick, easy, and inexpensive. Comparing the soil gas results to ground water results can assist in supporting or refuting a conceptual model selection. In addition, soil gas sampling from existing monitoring wells may provide an early warning detection technique to impending ground water contamination. This approach is being implemented at the Chemical Waste Landfill at Sandia National Laboratories in Albuquerque, New Mexico.

More Details
Results 101–121 of 121
Results 101–121 of 121