Pyomo - Optimization Modeling in Python 3rd Ed
Abstract not provided.
Abstract not provided.
Applied Energy
Probabilistic scenarios of renewable energy production, such as wind, have been gaining popularity for use in stochastic variants of power systems operations scheduling problems, allowing for optimal decision-making under uncertainty. The quality of the scenarios has a direct impact on the value of the resulting decisions, but until now, methods for creating scenarios have not been compared under realistic operational conditions. Here, we compare the quality of scenario sets created using three different methods, based on a simulated re-enactment of stochastic day-ahead unit commitment and subsequent dispatch for a realistic test system. We create scenarios using a dataset of forecasted and actual wind power values, scaled to evaluate the effects of increasing wind penetration levels. We show that the choice of scenario set can significantly impact system operating cost, renewable energy use, and the ability of the system to meet demand. This result has implications for the ability of system operators to efficiently integrate renewable production into their day-ahead planning, highlighting the need for the use of performance-based assessments for scenario evaluation.
Abstract not provided.
2018 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2018 - Proceedings
Stochastic versions of the unit commitment problem have been advocated for addressing the uncertainty presented by high levels of wind power penetration. However, little work has been done to study trade-offs between computational complexity and the quality of solutions obtained as the number of probabilistic scenarios is varied. Here, we describe extensive experiments using real publicly available wind power data from the Bonneville Power Administration. Solution quality is measured by re-enacting day-ahead reliability unit commitment (which selects the thermal units that will be used each hour of the next day) and real-time economic dispatch (which determines generation levels) for an enhanced WECC-240 test system in the context of a production cost model simulator; outputs from the simulation, including cost, reliability, and computational performance metrics, are then analyzed. Unsurprisingly, we find that both solution quality and computational difficulty increase with the number of probabilistic scenarios considered. However, we find unexpected transitions in computational difficulty at a specific threshold in the number of scenarios, and report on key trends in solution performance characteristics. Our findings are novel in that we examine these tradeoffs using real-world wind power data in the context of an out-of-sample production cost model simulation, and are relevant for both practitioners interested in deploying and researchers interested in developing scalable solvers for stochastic unit commitment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solar Energy
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions. Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Operations Research Letters
Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. In addition to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.