Publications Details
Comparison of simulated and measured wake behavior in stable and neutral atmospheric conditions
Cheung, Lawrence C.; Blaylock, Myra L.; Brown, Kenneth B.; Cutler, James J.; deVelder, Nathaniel d.; Herges, Thomas H.; Laros, James H.; Maniaci, David C.
In this study we performed detailed comparisons of numerical computations of single turbine wakes with measured data under neutral and stable atmospheric stability conditions. LES of the ABL inflow and turbine wakes are carried out using the ExaWind/Nalu-Wind simulation codes and compared with the equivalent measurements from the SWiFT research facility at wind speeds of 8.7 m/s and 4.8 m/s. The computed ABL inflow profiles and spectra showed good agreement with measured data in both stratification conditions, and the simulated turbine power and rotor speed also agreed with the measured turbine performance. A comparison of the downstream wake deficit profiles and turbulence distributions with lidar observations also showed that the LES computations generally captured the wake evolution in both neutral and stable conditions, with some possible discrepancies due to uncertainty around the turbine thrust and yaw settings. Finally, an examination of the downstream turbulence spectra showed that the peak frequency of the wake added turbulence corresponds to the characteristic wake shedding frequency, and we show that the turbulent integral lengthscale in the wake region also decreases significantly due to the presence of smaller turbulent features.