Publications

Results 1851–1875 of 9,998

Search results

Jump to search filters

Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics

Journal of Peridynamics and Nonlocal Modeling

Lehoucq, Richard B.; Lipton, Robert P.; Jha, Prashant K.

A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.

More Details

Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in the Geologic Disposal Safety Assessment (GDSA) Framework

Swiler, Laura P.; Helton, J.C.; Basurto, Eduardo B.; Brooks, Dusty M.; Mariner, Paul M.; Moore, Leslie M.; Mohanty, Sitakanta N.; Sevougian, Stephen D.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.

More Details

Page migration support for disaggregated non-volatile memories

ACM International Conference Proceeding Series

Kommareddy, Vamsee R.; Hammond, Simon D.; Hughes, Clayton H.; Samih, Ahmad; Awad, Amro

As demands for memory-intensive applications continue to grow, the memory capacity of each computing node is expected to grow at a similar pace. In high-performance computing (HPC) systems, the memory capacity per compute node is decided upon the most demanding application that would likely run on such system, and hence the average capacity per node in future HPC systems is expected to grow significantly. However, since HPC systems run many applications with different capacity demands, a large percentage of the overall memory capacity will likely be underutilized; memory modules can be thought of as private memory for its corresponding computing node. Thus, as HPC systems are moving towards the exascale era, a better utilization of memory is strongly desired. Moreover, upgrading memory system requires significant efforts. Fortunately, disaggregated memory systems promise better utilization by defining regions of global memory, typically referred to as memory blades, which can be accessed by all computing nodes in the system, thus achieving much better utilization. Disaggregated memory systems are expected to be built using dense, power-efficient memory technologies. Thus, emerging nonvolatile memories (NVMs) are placing themselves as the main building blocks for such systems. However, NVMs are slower than DRAM. Therefore, it is expected that each computing node would have a small local memory that is based on either HBM or DRAM, whereas a large shared NVM memory would be accessible by all nodes. Managing such system with global and local memory requires a novel hardware/software co-design to initiate page migration between global and local memory to maximize performance while enabling access to huge shared memory. In this paper we provide support to migrate pages, investigate such memory management aspects and the major system-level aspects that can affect design decisions in disaggregated NVM systems

More Details

Engage the ISO C++ Standard Committee

Trott, Christian R.

This report documents the completion of milestone STPRO4-26 Engaging the C++ Committee. The Kokkos team attended the three C++ Committee meetings in San Diego, Hawaii, and Cologne with multiple members, updated multiple in-flight proposals (e.g. MDSpan, atomic ref), contributed to numerous proposals central for future capabilities in C++ (e.g. executors, affinity) and organized a new effort to introduce a Basic Linear Algebra library into the C++ standard. We also implemented a production quality version of mdspan as the basis for replacing the vast majority of the implementation of Kokkos::View, and thus start the transitioning of one of the core features in Kokkos to its future replacement.

More Details

ROCM+Intel-PathForward+RemoteSpaces Development

Trott, Christian R.

This report documents the completion of milestone STPRO4-25 Harden and optimize the ROCm based AMD GPU backend, develop a prototype backend for the Intel ECP Path Forward architecture, and improve the existing prototype Remote Memory Space capabilities. The ROCM code was hardened up to the point of passing all Kokkos unit tests - then AMD deprecated the programming model, forcing us to start over in FY20 with HIP. The Intel ECP Path Forward architecture prototype was developed with some initial capabilities on simulators - but plans changed, so that work will not continue. Instead SYCL will be developed as a backend for Aurora. Remote Spaces was improved. Development is ongoing part of a collaboration with NVIDIA.

More Details

Performance Modeling of Vectorized SNAP Inter-Atomic Potentials on CPU Architectures

Blanco, Mark P.; Kim, Kyungjoo K.

SNAP potentials are inter-atomic potentials for molecular dynamics that enable simulations at accuracy levels comparable to density functional theory(DFT) at a fraction of the cost. As such, SNAP scales to on the order of 104 — 106 atoms. In this work, we explore CPU optimization of potentials computation using SIMD. We note that efficient use of SIMD is non-obvious as the application features an irregular iteration space for various potential terms, necessitating use of SIMD across atoms in a cross matrix, batched fashion. We present a preliminary analytic model to determine the correct batch size for several CPU architectures across several vendors, and show end-to-end speedups between 1.66x and 3.22x compared to the original.

More Details

Density Functional Theory Applied to Transition Metal Elements and binaries: Development Application and Results of the V-DM/16 Test Set

Decolvenaere, Elizabeth D.; Wills, Ann E.

Density functional theory (DFT) is undergoing a shift from a descriptive to a predictive tool in the field of solid state physics, heralded by a spike in “high-throughput” studies. However, methods to rigorously evaluate the validity and accuracy of these studies is lacking, raising serious questions when simulation and experiment disagree. In response, we have developed the V-DM/16 test set, designed to evaluate the experimental accuracy of DFT’s various implementations for pe riodic transition metal solids. Our test set evaluates 26 transition metal elements and 80 transition metal alloys across three physical observables: lattice constants, elastic coefficients, and formation energy of alloys. Whether or not a functional can accurately evaluate the formation energy offers key insights into whether the relevant physics are being captured in a simulation, an especially impor tant question in transition metals where active d-electrons can thwart the accuracy of an otherwise well-performing functional. Our test set captures a wide variety of cases where the unique physics present in transition metal binaries can undermine the effectiveness of “traditional” functionals. By application of the V/DM-16 test set, we aim to better characterize the performance of existing functionals on transition metals, and to offer a new tool to rigorously evaluate the performance of new functionals in the future.

More Details

Towards Multifluid Multiphysics Continuum Plasma Simulation for Modeling Magnetically-driven Experiments on Z

Shadid, John N.

Magnetically driven experiments supporting pulsed-power utilize a wide range of configurations, including wire-arrays, gas-puffs, flyer plates, and cylindrical liners. This experimental flexibility is critical to supporting radiation effects, dynamic materials, magneto-inertial-fusion (MIF), and basic high energy density laboratory physics (HEDP) efforts. Ultimately, the rate at which these efforts progress is limited by our understanding of the complex plasma physics of these systems. Our effort has been to begin to develop an advanced algorithmic structure and a R&D code implementation for a plasma physics simulation capability based on the five-moment multi-fluid / full-Maxwell plasma model. This model can be used for inclusion of multiple fluid species (e.g., electrons, multiple charge state ions, and neutrals) and allows for generalized collisional interactions between species, models for ionization/recombination, magnetized Braginskii collisional transport, dissipative effects, and can be readily extended to incorporate radiation transport physics. In the context of pulsed-power simulations this advanced model will help to allow SNL to computationally simulate the dense continuum regions of the physical load (e.g. liner implosions, flyer plates) as well as partial power-flow losses in the final gap region of the inner MITL. In this report we briefly summarize results of applying a preliminary version of this model in the context of verification type problems, and some initial magnetic implosion relevant prototype problems. The MIF relevant prototype problems include results from fully-implicit / implicit-explicit (IMEX) resistive MHD as well as full multifluid EM plasma formulations.

More Details

Monitoring, Understanding, and Predicting the Growth of Methane Emissions in the Arctic

Bambha, Ray B.; Lafranchi, Brian W.; Schrader, Paul E.; Roesler, Erika L.; Taylor, Mark A.; Lucero, Daniel A.; Ivey, Mark D.; Michelsen, Hope A.

Concern over Arctic methane (CH4) emissions has increased following recent discoveries of poorly understood sources and predictions that methane emissions from known sources will grow as Arctic temperatures increase. New efforts are required to detect increases and explain sources without being confounded by the multiple sources. Methods for distinguishing different sources are critical. We conducted measurements of atmospheric methane and source tracers and performed baseline global atmospheric modeling to begin assessing the climate impact of changes in atmospheric methane. The goal of this project was to address uncertainties in Arctic methane sources and their potential impact on climate by (1) deploying newly developed trace-gas analyzers for measurements of methane, methane isotopologues, ethane, and other tracers of methane sources in the Barrow, AK, (2) characterizing methane sources using high-resolution atmospheric chemical transport models and tracer measurements, and (3) modeling Arctic climate using the state-of-the-art high- resolution Spectral Element Community Atmosphere Model (CAM-SE).

More Details

Dynamical System for Resilient Computing

Rothganger, Fredrick R.; Hoemmen, Mark F.; Phipps, Eric T.; Warrender, Christina E.

The effort to develop larger-scale computing systems introduces a set of related challenges: Large machines are more difficult to synchronize. The sheer quantity of hardware introduces more opportunities for errors. New approaches to hardware, such as low-energy or neuromorphic devices are not directly programmable by traditional methods.

More Details

Evaluating the Opportunities for Multi-Level Memory - An ASC 2016 L2 Milestone

Voskuilen, Gwendolyn R.; Frank, Michael P.; Hammond, Simon D.; Rodrigues, Arun

As new memory technologies appear on the market, there is a growing push to incorporate them into future architectures. Compared to traditional DDR DRAM, these technologies provide appealing advantages such as increased bandwidth or non-volatility. However, the technologies have significant downsides as well including higher cost, manufacturing complexity, and for non-volatile memories, higher latency and wear-out limitations. As such, no technology has emerged as a clear technological and economic winner. As a result, systems are turning to the concept of multi-level memory, or mixing multiple memory technologies in a single system to balance cost, performance, and reliability.

More Details

A Surety Engineering Framework and Process to Address Ethical Legal and Social Issues for Artificial Intelligence

Shaneyfelt, Wendy S.; Feddema, John T.; James, Conrad D.

More Details

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul M.; Connolly, Laura A.; Cunningham, Leigh C.; Debusschere, Bert D.; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; LaForce, Tara; Nole, Michael A.; Park, Heeho D.; Laros, James H.; Rogers, Ralph D.; Seidl, Daniel T.; Sevougian, Stephen D.; Stein, Emily S.; Swift, Peter N.; Swiler, Laura P.; Vo, Jonathan; Wallace, Michael G.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media.

More Details

Predictive Science ASC Alliance Program (PSAAP) II 2016 Review of the Carbon Capture Multidisciplinary Science Center (CCMSC) at the University of Utah

Hoekstra, Robert J.; Ruggirello, Kevin P.

The review was conducted on May 9-10, 2016 at the University of Utah. Overall the review team was impressed with the work presented and found that the CCMSC had met or exceeded the Year 2 milestones. Specific details, comments and recommendations are included in this document.

More Details
Results 1851–1875 of 9,998
Results 1851–1875 of 9,998