Publications

13 Results

Search results

Jump to search filters

Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in the Geologic Disposal Safety Assessment (GDSA) Framework

Swiler, Laura P.; Helton, J.C.; Basurto, Eduardo B.; Brooks, Dusty M.; Mariner, Paul M.; Moore, Leslie M.; Mohanty, Sitakanta N.; Sevougian, Stephen D.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.

More Details

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul M.; Connolly, Laura A.; Cunningham, Leigh C.; Debusschere, Bert D.; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; LaForce, Tara; Nole, Michael A.; Park, Heeho D.; Laros, James H.; Rogers, Ralph D.; Seidl, Daniel T.; Sevougian, Stephen D.; Stein, Emily S.; Swift, Peter N.; Swiler, Laura P.; Vo, Jonathan; Wallace, Michael G.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media.

More Details

Methods of sensitivity analysis in geologic disposal safety assessment (GDSA) framework

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Stein, Emily S.; Swiler, Laura P.; Sevougian, Stephen D.

Probabilistic simulations of the post-closure performance of a generic deep geologic repository for commercial spent nuclear fuel in shale host rock provide a test case for comparing sensitivity analysis methods available in Geologic Disposal Safety Assessment (GDSA) Framework, the U.S. Department of Energy's state-of-the-art toolkit for repository performance assessment. Simulations assume a thick low-permeability shale with aquifers (potential paths to the biosphere) above and below the host rock. Multi-physics simulations on the 7-million-cell grid are run in a high-performance computing environment with PFLOTRAN. Epistemic uncertain inputs include properties of the engineered and natural systems. The output variables of interest, maximum I-129 concentrations (independent of time) at observation points in the aquifers, vary over several orders of magnitude. Variance-based global sensitivity analyses (i.e., calculations of sensitivity indices) conducted with Dakota use polynomial chaos expansion (PCE) and Gaussian process (GP) surrogate models. Results of analyses conducted with raw output concentrations and with log-transformed output concentrations are compared. Using log-transformed concentrations results in larger sensitivity indices for more influential input variables, smaller sensitivity indices for less influential input variables, and more consistent values for sensitivity indices between methods (PCE and GP) and between analyses repeated with samples of different sizes.

More Details
13 Results
13 Results