Publications

Results 26–50 of 69

Search results

Jump to search filters

A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing

Vineyard, Craig M.; Verzi, Stephen J.

As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

More Details

Optimization-based computation with spiking neurons

Proceedings of the International Joint Conference on Neural Networks

Verzi, Stephen J.; Vineyard, Craig M.; Vugrin, Eric D.; Sahakian, Meghan A.; James, Conrad D.; Aimone, James B.

Considerable effort is currently being spent designing neuromorphic hardware for addressing challenging problems in a variety of pattern-matching applications. These neuromorphic systems offer low power architectures with intrinsically parallel and simple spiking neuron processing elements. Unfortunately, these new hardware architectures have been largely developed without a clear justification for using spiking neurons to compute quantities for problems of interest. Specifically, the use of spiking for encoding information in time has not been explored theoretically with complexity analysis to examine the operating conditions under which neuromorphic computing provides a computational advantage (time, space, power, etc.) In this paper, we present and formally analyze the use of temporal coding in a neural-inspired algorithm for optimization-based computation in neural spiking architectures.

More Details

Recommended Research Directions for Improving the Validation of Complex Systems Models

Vugrin, Eric D.; Trucano, Timothy G.; Swiler, Laura P.; Finley, Patrick D.; Flanagan, Tatiana P.; Naugle, Asmeret B.; Tsao, Jeffrey Y.; Verzi, Stephen J.

More Details

Overcoming the Static Learning Bottleneck - the need for adaptive neural learning

2016 IEEE International Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings

Vineyard, Craig M.; Verzi, Stephen J.

Amidst the rising impact of machine learning and the popularity of deep neural networks, learning theory is not a solved problem. With the emergence of neuromorphic computing as a means of addressing the von Neumann bottleneck, it is not simply a matter of employing existing algorithms on new hardware technology, but rather richer theory is needed to guide advances. In particular, there is a need for a richer understanding of the role of adaptivity in neural learning to provide a foundation upon which architectures and devices may be built. Modern machine learning algorithms lack adaptive learning, in that they are dominated by a costly training phase after which they no longer learn. The brain on the other hand is continuously learning and provides a basis for which new mathematical theories may be developed to greatly enrich the computational capabilities of learning systems. Game theory provides one alternative mathematical perspective analyzing strategic interactions and as such is well suited to learning theory.

More Details

Quantifying neural information content: A case study of the impact of hippocampal adult neurogenesis

Proceedings of the International Joint Conference on Neural Networks

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.

Through various means of structural and synaptic plasticity enabling online learning, neural networks are constantly reconfiguring their computational functionality. Neural information content is embodied within the configurations, representations, and computations of neural networks. To explore neural information content, we have developed metrics and computational paradigms to quantify neural information content. We have observed that conventional compression methods may help overcome some of the limiting factors of standard information theoretic techniques employed in neuroscience, and allows us to approximate information in neural data. To do so we have used compressibility as a measure of complexity in order to estimate entropy to quantitatively assess information content of neural ensembles. Using Lempel-Ziv compression we are able to assess the rate of generation of new patterns across a neural ensemble's firing activity over time to approximate the information content encoded by a neural circuit. As a specific case study, we have been investigating the effect of neural mixed coding schemes due to hippocampal adult neurogenesis.

More Details

Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation & Uncertainty Quantification

Tsao, Jeffrey Y.; Trucano, Timothy G.; Kleban, S.D.; Naugle, Asmeret B.; Verzi, Stephen J.; Swiler, Laura P.; Johnson, Curtis M.; Smith, Mark A.; Flanagan, Tatiana P.; Vugrin, Eric D.; Gabert, Kasimir G.; Lave, Matthew S.; Chen, Wei; Delaurentis, Daniel; Hubler, Alfred; Oberkampf, Bill

This report contains the written footprint of a Sandia-hosted workshop held in Albuquerque, New Mexico, June 22-23, 2016 on “Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation and Uncertainty Quantification,” as well as of pre-work that fed into the workshop. The workshop’s intent was to explore and begin articulating research opportunities at the intersection between two important Sandia communities: the complex systems (CS) modeling community, and the verification, validation and uncertainty quantification (VVUQ) community The overarching research opportunity (and challenge) that we ultimately hope to address is: how can we quantify the credibility of knowledge gained from complex systems models, knowledge that is often incomplete and interim, but will nonetheless be used, sometimes in real-time, by decision makers?

More Details

Repeated play of the SVM game as a means of adaptive classification

Proceedings of the International Joint Conference on Neural Networks

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

The field of machine learning strives to develop algorithms that, through learning, lead to generalization; that is, the ability of a machine to perform a task that it was not explicitly trained for. An added challenge arises when the problem domain is dynamic or non-stationary with the data distributions or categorizations changing over time. This phenomenon is known as concept drift. Game-theoretic algorithms are often iterative by nature, consisting of repeated game play rather than a single interaction. Effectively, rather than requiring extensive retraining to update a learning model, a game-theoretic approach can adjust strategies as a novel approach to concept drift. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in an adaptive manner with repeated play to address concept drift, and show results of applying this algorithm to synthetic as well as real data.

More Details

Evaluating Moving Target Defense with PLADD

Jones, Stephen T.; Outkin, Alexander V.; Gearhart, Jared L.; Hobbs, Jacob A.; Siirola, John D.; Phillips, Cynthia A.; Verzi, Stephen J.; Tauritz, Daniel T.; Mulder, Samuel A.; Naugle, Asmeret B.

This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. We show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.

More Details

MapReduce SVM game

Procedia Computer Science

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom-bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

More Details
Results 26–50 of 69
Results 26–50 of 69