Publications

18 Results

Search results

Jump to search filters

CHARACTERIZING HUMAN PERFORMANCE: DETECTING TARGETS AT HIGH FALSE ALARM RATES

Proceedings of the 2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2021

Speed, Ann S.; Wheeler, Jason W.; Russell, John L.; Oppel, Fred; Sanchez, Danielle; Silva, Austin R.; Chavez, Anna

The prevalence effect is the observation that, in visual search tasks as the signal (target) to noise (non-target) ratio becomes smaller, humans are more likely to miss the target when it does occur. Studied extensively in the basic literature [e.g., 1, 2], this effect has implications for real-world settings such as security guards monitoring physical facilities for attacks. Importantly, what seems to drive the effect is the development of a response bias based on learned sensitivity to the statistical likelihood of a target [e.g., 3-5]. This paper presents results from two experiments aimed at understanding how the target prevalence impacts the ability for individuals to detect a target on the 1,000th trial of a series of 1000 trials. The first experiment employed the traditional prevalence effect paradigm. This paradigm involves search for a perfect capital letter T amidst imperfect Ts. In a between-subjects design, our subjects experienced target prevalence rates of 50/50, 1/10, 1/100, or 1/1000. In all conditions, the final trial was always a target. The second (ongoing) experiment replicates this design using a notional physical facility in a mod/sim environment. This simulation enables triggering different intrusion detection sensors by simulated characters and events (e.g., people, animals, weather). In this experiment, subjects viewed 1000 “alarm” events and were asked to characterize each as either a nuisance alarm (e.g., set off by an animal) or an attack. As with the basic visual search study, the final trial was always an attack.

More Details

Exploratory analysis of visual search data

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Stracuzzi, David J.; Speed, Ann S.; Silva, Austin R.; Haass, Michael J.; Trumbo, Derek T.

Visual search data describe people’s performance on the common perceptual problem of identifying target objects in a complex scene. Technological advances in areas such as eye tracking now provide researchers with a wealth of data not previously available. The goal of this work is to support researchers in analyzing this complex and multimodal data and in developing new insights into visual search techniques. We discuss several methods drawn from the statistics and machine learning literature for integrating visual search data derived from multiple sources and performing exploratory data analysis. We ground our discussion in a specific task performed by officers at the Transportation Security Administration and consider the applicability, likely issues, and possible adaptations of several candidate analysis methods.

More Details

Through a scanner quickly: Elicitation of P3 in transportation security officers following rapid image presentation and categorization

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Trumbo, Michael C.; Matzen, Laura E.; Silva, Austin R.; Haass, Michael J.; Divis, Kristin; Speed, Ann S.

Numerous domains, ranging from medical diagnostics to intelligence analysis, involve visual search tasks in which people must find and identify specific items within large sets of imagery. These tasks rely heavily on human judgment, making fully automated systems infeasible in many cases. Researchers have investigated methods for combining human judgment with computational processing to increase the speed at which humans can triage large image sets. One such method is rapid serial visual presentation (RSVP), in which images are presented in rapid succession to a human viewer. While viewing the images and looking for targets of interest, the participant’s brain activity is recorded using electroencephalography (EEG). The EEG signals can be time-locked to the presentation of each image, producing event-related potentials (ERPs) that provide information about the brain’s response to those stimuli. The participants’ judgments about whether or not each set of images contained a target and the ERPs elicited by target and non-target images are used to identify subsets of images that merit close expert scrutiny [1]. Although the RSVP/EEG paradigm holds promise for helping professional visual searchers to triage imagery rapidly, it may be limited by the nature of the target items. Targets that do not vary a great deal in appearance are likely to elicit useable ERPs, but more variable targets may not. In the present study, we sought to extend the RSVP/EEG paradigm to the domain of aviation security screening, and in doing so to explore the limitations of the technique for different types of targets. Professional Transportation Security Officers (TSOs) viewed bag X-rays that were presented using an RSVP paradigm. The TSOs viewed bursts of images containing 50 segments of bag X-rays that were presented for 100 ms each. Following each burst of images, the TSOs indicated whether or not they thought there was a threat item in any of the images in that set. EEG was recorded during each burst of images and ERPs were calculated by time-locking the EEG signal to the presentation of images containing threats and matched images that were identical except for the presence of the threat item. Half of the threat items had a prototypical appearance and half did not. We found that the bag images containing threat items with a prototypical appearance reliably elicited a P300 ERP component, while those without a prototypical appearance did not. These findings have implications for the application of the RSVP/EEG technique to real-world visual search domains.

More Details

Factors contributing to performance for cyber security forensic analysis

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hopkins, Shelby E.; Wilson, Andrew T.; Silva, Austin R.; Forsythe, James C.

Previously, the current authors (Hopkins et al. 2015) described research in which subjects provided a tool that facilitated their construction of a narrative account of events performed better in conducting cyber security forensic analysis. The narrative tool offered several distinct features. In the current paper, an analysis is reported that considered which features of the tool contributed to superior performance. This analysis revealed two features that accounted for a statistically significant portion of the variance in performance. The first feature provided a mechanism for subjects to identify suspected perpetrators of the crimes and their motives. The second feature involved the ability to create an annotated visuospatial diagram of clues regarding the crimes and their relationships to one another. Based on these results, guidance may be provided for the development of software tools meant to aid cyber security professionals in conducting forensic analysis.

More Details
18 Results
18 Results