Publications

Results 96201–96225 of 96,771

Search results

Jump to search filters

CMOS IC I sub DDQ testing for the 1990s

Soden, Jerry M.

Significant improvements in CMOSIC quality, reliability, and fabrication yield can be readily achieved in the 1990s by appropriate implementation of tests for quiescent power supply current (I{sub DDQ}). As part of an overall quality management program, I{sub DDQ} testing incorporated with design for testability and modified conventional logic response testing enables 100% stuck-at fault coverage, quality improvement goals of defective levels less than 100 PPM, and reliability greater than 0.999 for 30 years. 9 refs., 2 figs., 1 tab.

More Details

The affect of gravity on particle collection in inertial impactors

Rader, Daniel J.

Gravitational forces have been found to be an important factor in defining the particle collection efficiency curve of inertial impactors for large particles. In general it was found that if the parameter {cflx G} = gW/V{sub 0}{sup 2} (g is the gravitational acceleration, W is the nozzle diameter and V{sub 0} is the average fluid velocity at the nozzle throat) in greater than 10{sup {minus}3}, the efficiency curve would shift to lower particle sizes. No effect could be seen for lower values of {cflx G}. 1 ref., 1 fig., 1 tab.

More Details

Development of the sodium/sulfur technology for energy storage

Magnani, N.J.

The US Department of Energy (DOE) has supported the development of the sodium-sulfur technology since 1973. The programs have focused on progressing core aspects of the technology and completing initial battery engineering for both mobile and stationary applications. An overview of the Office of Energy Management (OEM) activities is contained in this paper. Two major development programs have been active: the first with Ford Aerospace and Communications Corporation (1975 to 1985), and the second with Chloride Silent Power Limited (1985 to 1990). With the completion this year of the qualification of a cell suitable for initial Solar Energy Systems (SES) applications, the emphasis of future DOE/OEM sodium/sulfur programs will shift to SES-battery engineering and development. The initial effort will resolve a number of issues related to the feasibility of utilizing the sodium/sulfur technology in these large-scale applications. This multi-year activity will represent the initial phase of an integrated long-term DOE-supported program to produce a commercially viable battery system.

More Details

Data and conclusions from tests on small screws

Cawlfield, J.L.; Ernest, T.L.; Reese, R.T.

The integrity of many mechanical assemblies and electrical components depends on small threaded fasteners. The design standards for small (less than {1/4} inch in diameter) screws made of stainless steel are not as well developed as those for larger sizes of high strength steels. The typical design approach is based on the application of static design principals. Steady state accelerations are applied to the component or assembly and sufficient screws are installed in mounting hardware for attachment to the next assembly. These design principals have been used successfully for years in a wide variety of applications. As the parts requiring small screws have continued to decrease in size, some design requirements include greater thread depths and adherence to strict interpretation of the governing thread standards. These design requirements have their origins in the lack of adequate definitions and standards for designs using small threaded fasteners. These design practices have led to significant problems in manufacturing parts with small threaded fasteners by requiring thread depths to four and more diameters of engagement while maintaining thread heights (radial engagement) of 75 percent throughout the thread interfaces. A test program was developed to address questions regarding design and manufacturing issues involving small threaded fasteners which included tensile strength, length of engagement needed to achieve the full strengths of the screws, and verification of the static design principals in dynamic conditions. This paper summarizes the initial results obtained to date from this test program and describes the work-in-progress on the dynamic tests with their related static tests. 2 refs., 4 figs., 4 tabs.

More Details

A continuum damage model for the quasi-static response of brittle materials

Chen, Er-Ping C.

An isotropic continuum damage theory which accounts for the degradation of material strength under quasi-static loading conditions has been developed in the present investigation. The damage mechanism in this theory has been selected to be the interaction and growth of subscale cracks. The development of the theory follows closely the strain-rate dependent dynamic model advanced by the first author and his coworkers. Briefly, the cracks are activated by the maximum principal tensile strain and the density of activated cracks is described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O'Connell are then used to represent the global material degradation due to subscale cracking. Two additional material constants have been introduced in this model. These constants are determined from uniaxial tensile test data. The model has been implemented into a finite element code. Sample calculations involving the uniaxial and biaxial responses of plain concrete panels are presented to demonstrate the utility of the model. 7 refs., 2 figs.

More Details

Experimental evaluation of chemical cleaning processes for high-lifetime silicon processing

King, David L.

The first in a series of multi-factor experiments designed to optimize the chemical cleaning procedure for four types of silicon material used in solar cell fabrication has been completed. The goal of this first experiment (a twenty-two factor main-effects experiment) was to determine the factors associated with chemical cleaning procedures that are most important in obtaining high excess charge-carrier recombination lifetime following a high-temperature furnace oxidation. It was determined that the factors having the strongest influence on charge-carrier lifetime were different for the four different silicon materials considered. In general, the lower the lifetime of the material, the less sensitive the material was to different chemical cleaning steps. The stability of the lifetime was also evaluated with several factors exhibiting a significant effect for high-quality silicon. Chemical cleaning procedures were identified that resulted in stable post-oxidation lifetimes greater than 2 ms for high-resistivity float-zone silicon. 3 refs., 8 figs.

More Details

Insulations for metallic glasses in pulse power systems

Turman, Bobby N.

Insulations are used in metallic glass ribbon cores in pulse power applications to prevent interlaminar eddy currents due to voltages induced between adjacent laminations. These interlaminar eddy currents can greatly increase the losses in cores, and, thereby, decrease the pulse permeability at high magnetization rates. This paper reports results of experiments with various insulation materials and both low and high induced anisotropy energy iron-base metallic glass ribbons. Co-wound insulation films as well as conformal insulations were investigated. Magnetic properties and voltage hold-off strengths are reported. 11 refs., 11 figs., 5 tabs.

More Details

Minimizing frequency pulling of quartz oscillators due to power supply variations

Wessendorf, Kurt O.

When quartz controlled oscillators are required for use in applications demanding precision many factors will ultimately place limitations on the ability of the oscillator to remain at the desired frequency. These factors include temperature, resonator Q, pullability, radiation, output load variability, and the electronic components. This paper addresses the subject of frequency instability of oscillator circuits due to power supply voltage variations. In particular, the primary sources of this instability are described for a Pierce oscillator employing a bipolar transistor and design techniques are presented which minimize these frequency pulling effects. 4 refs., 17 figs.

More Details

Three-dimensional structural analyses of reentry vehicles

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Gwinn, Kenneth W.

The three-dimensional structural analysis of reentry vehicles presents a considerable challenge to the analyst. This is due to the mechanics of the problem as well as the incorporation of results from several disciplines into the environmental description of the problem. Separate results from aero-analyses, frequently computed in one-dimensional format must be combined into a three-dimensional format suitable for a structural finite element analysis. Features required for the analysis include the ablated thickness of the heatshield structure, as well as pressure on the vehicle and the temperature distribution through the heatshield. By combining these environments, a complete description of all factors which affect the structural performance of reentry vehicles are included into one analysis. This paper presents a method of analyzing the structural response of reentry vehicles using the complete three-dimensional environmental load description.

More Details

Reflection mass spectrometry (REMS) during III/V MBE

Tsao, Jeffrey Y.

Reflection Mass Spectrometry (REMS) consists of a cryo-shrouded mass spectrometer which measures mass-analyzed, line-of-sight chemical fluxes from a growing wafer. It is especially useful during III/V molecular beam epitaxy (MBE) for which there are always substantial group V fluxes and often some group III fluxes leaving the wafer during growth. These fluxes depend sensitively on the instantaneous chemical reactivity of the surface. That chemical reactivity in turn depends on instantaneous alloy composition (III/III ratio), surface stoichiometry (As coverage) and temperature. In this brief summary of our work, we describe two examples of the engineering'' usefulness of REMS, involving MBE of InAlAs and InGaAs and one example of measurements of basic scientific interest. 3 figs.

More Details

Measuring flow properties of wicks for heat pipe solar receivers

Adkins, Douglas R.

A program is under way to develop liquid metal heat pipes that can transfer energy from the focal point of a parabolic solar concentrator to the heater tubes of one or more Stirling engines. To design high performance wicks for heat pipe solar receivers, it is necessary to have an accurate assessment of the wick's properties. Procedures for measuring the flow properties of wicks before and after fabrication processes take place are presented. The testing procedures provide a useful method of determining the validity of a wick design before full-scale testing is attempted.

More Details

Recent progress in photovoltaic concentrator module technology

Richards, Elizabeth H.

Significant progress is continuing in the development of photovoltaic (PV) concentrator technology. New record cell and module efficiencies have been achieved, and improvements in cells, cell assemblies, and modules are increasing reliability and decreasing cost. The number of firms actively pursuing PV concentrator module technology has increased substantially in the last three years. Two new concentrator systems were installed last year, and we are likely to see more in the near future. This paper describes the most significant developments of the last two years, including descriptions of PV concentrator module development and reliability activities, advances in concentrator cell technology, the new PV concentrator array installations, a new Concentrator Initiative Program, and results of the latest costing study. 26 refs., 9 figs., 1 tab.

More Details

Petroleum storage potential of the Chacahoula salt dome, Louisiana

Neal, J.T.

Chacahoula salt dome, eight miles southwest of Thibodaux, LA, could be solution mined to create caverns for storing as much as 500 million barrels (MMB) of crude oil, should the Strategic Petroleum Reserve (SPR) require additional storage volume. The salt mass geometry is confirmed by more than 50 oil wells, and also from previous exploratory drilling for sulphur. Top of salt occurs at {minus}1100 ft, and some 1300 acres exist within the {minus}2000 ft salt contour. Frasch mining of 1.35 million long tons of sulphur caused the surface to subside about one foot on the northeastern part of the dome. Creep-induced subsidence averaging {approximately}2.7 ft over 30 yrs is estimated for a 200 MMB cavern array, which would require perimeter diking to control localized perennial flooding. Earthquakes approaching intensity MM 6 have occurred nearby and are expected to recur on the order of {approximately}100 yrs but would not affect cavern stability. Additional study of brine disposal methods and hurricane surge probabilities are needed to establish design parameters and cost estimates for storage. 11 refs., 8 figs., 2 tabs.

More Details

A Nuisance Alarm Data System for evaluation of intrusion detectors

Ream, W.K.

A Nuisance Alarm Data System (NADS) was developed to gather long- term background alarm data on exterior intrusion detectors as part of their evaluation. Since nuisance alarms play an important part in the selection of intrusion detectors for use at Department of Energy (DOE) facilities, an economical and reliable way to monitor and record there alarms was needed. NADS consists of an IBM Personal Computer and printer along with other commercial units to communicate with detectors, to gather weather data and to record video for assessment. Each alarm, its assessment and the weather conditions occurring at alarm time are placed into a database that is used in the evaluation of the detector. The operating software is written in Turbo Pascal for easy maintenance and modification. A portable system, based on the NADS design, has been built and shipped to other DOE locations to do on-site alarm monitoring. This has been valuable for the comparison of different detectors in the on-site environment and for testing new detectors when the appropriate conditions do not exist or cannot be simulated at the Exterior Intrusion Detection Testbed.

More Details

Application of parallel computing to the Monte Carlo simulation of electron scattering in solids: A rapid method for profile deconvolution

Romig, Alton D.

X-ray microanalysis by analytical electron microscopy (AEM) has proven to be a powerful tool for characterizing the spatial distribution of solute elements in materials. True compositional variations over spatial scales smaller than the actual resolution for microanalysis can be determined if the measured composition profile is deconvoluted. Explicit deconvolutions of such data, via conventional techniques such as Fourier transforms, are not possible due to statistical noise in AEM microanalytical data. Hence, the method of choice is to accomplish the deconvolution via iterative convolutions. In this method, a function describing the assumed true composition profile, calculated by physically permissible thermodynamic and kinetic modeling is convoluted with the x-ray generation function and the result compared to the measured composition profile. If the measured and calculated profiles agree within experimental error, it is assumed that the true compositional profile has been determined. If the measured and calculated composition profiles are in disagreement, the assumptions in the physical model are adjusted and the convolution process repeated. To employ this procedure it is necessary to calculate the x-ray generation function explicitly. While a variety of procedures are available for calculating this function, the most accurate procedure is to use Monte Carlo modeling of electron scattering. 9 refs., 1 fig.

More Details

Aging and compatbility of TNF-doped mylar

Arnold Jr., C.

TNF-doped Mylar is a new radiation-hard dielectric that has recently been qualified as a viable substitute for Mylar in capacitors. The advantage of TNF-doped Mylar is that it satisfies both the nuclear safety and radiation hardness requirements of weapons. Mylar is not radiation-hard. Aging and compatibility studies were carried out to insure that (1) TNF does not diffuse from the film during fabrication of the capacitor or during storage; and (2) there are no compatibility problems with aluminum foil (the conductor) or Fluorinert (the secondary dielectric). Losses of TNF were barely detectable during the vacuum bakes used in fabricating capacitors or during accelerated aging tests carried out below T{sub g} (70C) over a two year period in air. In other accelerated tests, no compatibility problems were detected with aluminum or Fluorinert. TNF-doped Mylar is now being used in the MC-4109 capacitor that was called out for use in SRAM II. We anticipate no age-related or compatibility-related problems with TNF-doped Mylar.

More Details

Effect of solvent environments on the swelling behavior of elastomers commonly used in weapon components

Green, Philip J.

The equilibrium swelling of a number of elastomeric seals, commonly used in weapon components, was determined after they were exposed to a saturated solvent environment. The dimensional stability of these elastomers in the solvents varied considerably. Reasons for this are discussed and a method by which one may estimate the degree of swelling that these elastomers will undergo in a solvent environment is presented. 5 refs.

More Details

Current issues in sol-gel reaction kinetics

Assink, Roger A.

This paper surveys a few of the current issues in sol-gel reaction kinetics. Many times seemingly modest changes in reactants or reaction conditions can lead to substantial differences in the overall reaction rates and pathways. For example, qualitative features of the reaction kinetics can depend on catalyst concentration. At very high acid-catalyst concentrations, reverse are significant for TMOS sol-gels, while for moderate acid-catalyst concentrations, reverse reactions are substantially reduced. The reaction kinetics are substantially reduced. The reaction kinetics of two similar tetraalkoxysilanes: tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS), can be markedly different under identical reaction conditions. Under acid-catalyzed reaction conditions, a TMOS sol-gel undergoes both water-and alcohol-producing condensation reactions while a TEOS sol-gel undergoes only water-producing condensation. The early time hydrolysis and condensation reactions of a TMOS sol-gel are statistical in nature and can be quantitatively described by a few simple reaction rate constants while the reaction behavior of a TEOS sol-gel is markedly nonstatistical. A comprehensive theory of sol-gel kinetics must address diverse experimental findings. 9 refs., 3 figs., 1 tab.

More Details

An algorithm for using a slide-screw tuner as a computer-controlled impedance

35th ARFTG Conference Digest - Spring 1990

Sloan, George R.

In the testing of active microwave components, a common test procedure is to evaluate a device's performance when subjected to an all-phase, constant-standing-wave-ratio (APCS) load pull. Such a test specification is useful in verifying a device's stability and mismatch performance. Typically, APCS pulls are tediously performed by hand, with manually operated tuners. However, with the advent of mechanical, computer-controlled tuners, it is how possible to automate this procedure. At Sandia, the goal was to integrate an APCS pull capability into a multi-test, single-connection tester. (The single-connection concept implies that many test, such as network analysis, spectral analysis, and noise figure measurements can be made from a one-time, device-to-tester connection). Consequently, the slide-screw tuner was the obvious choice due to its removable probe capability. Hence, it became necessary to develop a custom algorithm capable of utilizing the tuner in an impedance-finding mode. The general concept used in implementing this capability was to empirically characterize the tuner over and acceptable range of tuner positions, and then use this characterization to intelligently predict the tuner positions needed to present the desired impedance. 4 figs.

More Details

Novel processing of HTS based conductors

Ginley, D.S.

Conductor development is one of the major long term goals in high temperature superconductor research. In this paper we report on two promising processing technologies that have been utilized to produce superconducting HTS conductors. First, melt spun YBa{sub 2}Cu{sub 3}O{sub 7} fibers rapid thermal processed for 1--8 sec at 950 to 1075{degree}C have {Tc}'s to 92 K, J{sub c}'s to 1100 A/cm{sup 2} and the orthorhombic twinned morphology typical for high quality YBa{sub 2}Cu{sub 3}O{sub 7}. A processing matrix of time, temperature and composition for these fibers shows that slightly CuO-rich starting compositions give the best results. Second, silver tube encapsulated wires of Bi{sub 1.7}Pb{sub 0.3}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} have been made by extrusion, wire drawing and cold rolling. The resulting tapes show orientation of the crystallites, zero resistance up to 100K and improved magnetic hysteresis above 50 K. The combination of mechanical reprocessing and extended thermal anneals near 850{degree}C appears to significantly improve these materials. 13 refs., 7 figs.

More Details

The adaptive line enhancer applied to chirp detection

Elliott, G.R.; Stearns, S.D.

This paper discusses the ability of an adaptive line enhancer (ALE) driven by the least-mean-squares (LMS) algorithm to track the frequency of a chirping signal in broadband noise. The dynamic behavior of the weights is described and a weight tracking error bound is derived in terms in chirp rate. Frequency tracking and weight behavior are illustrated in examples. 6 refs., 7 figs.

More Details

Thermal effects on the Josephson series-array voltage standard

Physica B: Physics of Condensed Matter

Duncan, R.V.

A series-array voltage standard containing 2,076 Josephson junctions has been operated in a liquid helium bath maintained within a refrigerated Dewar over the temperature range 1.56K ≤ T ≤ 4.54K. No systematic variation in the array voltage near 1.018V with temperature was detected over this entire range, indicating that any temperature coefficient of the array voltage must be less than 2×10-8 V/K. The critical current and gap energy of the weakest junction within the array in the absence of millimeter wave power were measured as a function of temperature over this same range. The noise sensitivity of the array was observed to change abruptly but by a small amount as the helium bath was pumped superfluid. Voltage calibrations were unaffected by the bath's superfluid transition. © 1990.

More Details

An internal/external pressure, tension/compression multiaxial fatigue system

Bourcier, R.J.

As computers become increasingly powerful, the constitutive models used in structural analysis codes become increasingly sophisticated. With the current generation of supercomputers, it now seems reasonable to consider incorporating relatively detailed representations of the multiaxial deformation response of engineering alloys. To aid in the development of such models and to allow measurement of their constituent parameters, we have designed a complex multiaxial deformation test system. The system to be described has been developed to perform non-proportional cycling of thin-walled metal tubes using internal/external fluid pressure and tensile/compressive axial loading. It has been added to an existing MTS 490 kN load frame with a PDP 11/34-based computer control system. Features of interest include; specimen grips, the high pressure chamber, the hydraulic intensifier and controller, and associated valving and switching. Initial software for this system has been written on the PDP 11/34 in the MTS MultiUser-BASIC language to perform simple proportional multiaxial cyclic deformation to a prescribed effective plastic strain limit.

More Details

New material sampling rationale

Hahn, R.F.

This paper explains the newly implemented new material (NM) sampling rationale for weapon production developed by Frank W. Mueller, SNL/7266, and approved by DOE. Our experience with weapon production programs has been primarily limited to production lengths of five years or less. As more recent programs, such as the W80, are moving toward increasingly longer production phases, it has become apparent that our previous sampling rationale may have required excessive new material samples. 3 refs.

More Details
Results 96201–96225 of 96,771
Results 96201–96225 of 96,771