Publications

Results 78326–78350 of 96,771

Search results

Jump to search filters

THz quantum cascade lasers for standoff molecule detection

Wanke, Michael W.; Lerttamrab, Maytee L.; Montano, Ines M.; Chow, Weng W.

Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.

More Details

Fundamental Enabling Issues in Nanotechnology: Stress at the Atomic Scale

Foiles, Stephen M.; Hearne, Sean J.; Morales, Alfredo M.; Webb, Edmund B.; Zimmerman, Jonathan A.

To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also support the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g., continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in nanostructures and, eventually, integrated nanocomponents.

More Details

Computationally efficient Bayesian inference for inverse problems

Marzouk, Youssef M.; Najm, H.N.; Rahn, Larry A.

Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.

More Details

Shear flow on super-hydrophobic surfaces

Proposed for publication in the International Journal for Multiscale Computational Engineering.

Van Swol, Frank

Super-hydrophobic surfaces, which exhibit large contact angles, can give rise to slip flow of aqueous fluids. We present our work on shear flow of atomistic fluids over simple super-hydrophobic surfaces. Molecular dynamic simulations are employed to investigate the flow field of fluid between two parallel surfaces, one of which is moving. Exploring a range of fluid thermodynamic state points, we demonstrate the influence of fluid phase and structure near the surfaces on prevalence, and degree, of slip at the super-hydrophobic surface.

More Details

Measuring the maturity of a technology : guidance on assigning a TRL

Mitchell, John A.

This report provides guidance on how to assign a technology readiness level (TRL). The method proposed assists in assigning TRLs through a series of questions that focus on a set of unambiguous maturation metrics. This method is slightly biased towards the environment and approach to technology maturation at Sandia National Laboratories where customers and suppliers are in very close proximity to one another, allowing for supplier-customer interactions at a very early stage in technology development. The hope is that this report can serve as a practical guide to anyone trying to understand the maturity of a specific technology. Risk is reduced in system acquisition by selecting mature technologies for inclusion in system development. TRLs are used to assess the maturity of evolving technologies and therefore become part of an overall risk reduction strategy in system development.

More Details
Results 78326–78350 of 96,771
Results 78326–78350 of 96,771