Publications

Results 6751–6775 of 99,299

Search results

Jump to search filters

Nonlinear Elongation Flows in Associating Polymer Melts: From Homogeneous to Heterogeneous Flow

Physical Review X

Mohottalalage, Supun S.; Senanayake, Manjula; Clemmer, Joel T.; Perahia, Dvora; Grest, Gary S.; O'Connor, Thomas

Response to elongational flow is fundamental to soft matter and directly impacts new developments in a broad range of technologies form polymer processing and microfluidics to controlled flow in biosystems. Of particular significance are the effects of elongational flow on self-assembled systems where the interactions between the fundamental building blocks control their adaptation. Here we probe the effects of associating groups on the structure and dynamics of linear polymer melts in uniaxial elongation using molecular dynamics simulations. We study model polymers with randomly incorporated backbone associations with interaction strengths varying from 1kBT to 10kBT. These associating groups drive the formation of clusters in equilibrium with an average size that increases with interaction strength. Flow drives these clusters to continuously break and reform as chains stretch. These flow-driven cluster dynamics drive a qualitative transition in polymer elongation dynamics from homogeneous to nanoscale localized yield and cavitation as the association strength increases.

More Details

Crack nucleation at forging flaws studied by non-local peridynamics simulations

Mathematics and Mechanics of Solids

Rezaul Karim, Mohammad; Narasimhachary, Santosh; Radaelli, Francesco; Amann, Christian; Dayal, Kaushik; Silling, Stewart; Germann, Timothy C.

We present a computational study and framework that allows us to study and understand the crack nucleation process from forging flaws. Forging flaws may be present in large steel rotor components commonly used for rotating power generation equipment including gas turbines, electrical generators, and steam turbines. The service life of these components is often limited by crack nucleation and subsequent growth from such forging flaws, which frequently exhibit themselves as non-metallic oxide inclusions. The fatigue crack growth process can be described by established engineering fracture mechanics methods. However, the initial crack nucleation process from a forging flaw is challenging for traditional engineering methods to quantify as it depends on the details of the flaw, including flaw morphology. We adopt the peridynamics method to describe and study this crack nucleation process. For a specific industrial gas turbine rotor steel, we present how we integrate and fit commonly known base material property data such as elastic properties, yield strength, and S-N curves, as well as fatigue crack growth data into a peridynamic model. The obtained model is then utilized in a series of high-performance two-dimensional peridynamic simulations to study the crack nucleation process from forging flaws for ambient and elevated temperatures in a rectangular simulation cell specimen. The simulations reveal an initial local nucleation at multiple small oxide inclusions followed by micro-crack propagation, arrest, coalescence, and eventual emergence of a dominant micro-crack that governs the crack nucleation process. The dependence on temperature and density of oxide inclusions of both the details of the microscopic processes and cycles to crack nucleation is also observed. The results are compared with fatigue experiments performed with specimens containing forging flaws of the same rotor steel.

More Details

Chronological changes in soil biogeochemical properties of the glacier foreland of Midtre Lovénbreen, Svalbard, attributed to soil-forming factors

Geoderma

Mishra, Umakant; Kim, You J.; Laffly, Dominique; Kim, Se E.; Nilsen, Lennart; Chi, Junhwa; Nam, Sungjin; Lee, Yong B.; Jeong, Sujeong; Yoo Kyung Lee, Yoo K.; Jung, Ji Y.

Glacier forelands provide an excellent opportunity to investigate vegetation succession and soil development along the chronosequence; however, there are few studies on soil biogeochemical changes from environmental factors, aside from time. This study aimed to investigate soil development and biogeochemical changes in the glacier foreland of Midtre Lovénbreen, Svalbard, by considering various factors, including time. Eighteen vegetation and soil variables were measured at 38 different sampling sites of varying soil age, depth, and glacio-fluvial activity. Soil organic matter (SOM) was quantitatively measured, and the compositional changes in SOM were determined following size-density fractionation. In the topsoil, the soil organic carbon (SOC) and total nitrogen (N) content was found to increase along the soil chronosequence and were highly correlated with vegetation-associated variables. These findings suggest that plant-derived material was the main driver of the light fraction of SOM accumulation in the topsoil. The heavy fractions of SOM were composed of microbially transformed organic compounds, eventually contributing to SOM stabilization within short 90-yr deglaciation under harsh climatic conditions. In addition to time, the soil vertical profiles showed that other environmental parameters, also affected the soil biogeochemical properties. The high total phosphorous (P) content and electrical conductivity in the topsoil were attributed to unweathered subglacial materials and a considerable amount of inorganic ions from subglacial meltwater. The high P and magnesium content in the subsoil were attributed to parent materials, while the high sodium and potassium content in the surface soil were a result of sea-salt deposition. Glacio-fluvial runoff hampered ecosystem development by inhibiting vegetation development and SOM accumulation. This study emphasizes the importance of considering various soil-forming factors, including parent/subglacial materials, aeolian deposition, and glacio-fluvial runoff, as well as soil age, to obtain a comprehensive understanding of the ecosystem development in glacier forelands.

More Details

Invariant surface elastic properties in FCC metals and their correlation to bulk properties revealed by machine learning methods

Journal of the Mechanics and Physics of Solids

Chen, Xiaolei; Dingreville, Remi; Richeton, Thiebaud; Berbenni, Stephane

We present a combination of machine-learned models that predicts the surface elastic properties of general free surfaces in face-centered cubic (FCC) metals. These models are built by combining a semi-analytical method based on atomistic simulations to calculate surface properties with the artificial neural network (ANN) method or the boosted regression tree (BRT) method. The latter is also used to link bulk properties and surface orientation to surface properties. The surface elastic properties are represented by their invariants considering plane elasticity within a polar method. The resulting models are shown to accurately predict the surface elastic properties of seven pure FCC metals (Cu, Ni, Ag, Au, Al, Pd, Pt). The BRT model reveals the correlations between bulk and corresponding surface properties in terms of invariants, which can be used to guide the design of complex nano-sized particles, wires and films. Finally, by expressing the surface excess energy density as a function of surface elastic invariants, fast predictions of surface energy as a function of in-plane deformations can be made from these model constructs.

More Details

Neutron backscatter edges as a diagnostic of burn propagation

Physics of Plasmas

Crilly, A.J.; Appelbe, B.D.; Mannion, Owen M.; Forrest, C.J.; Knauer, J.P.; Schlossberg, D.J.; Hartouni, E.P.; Moore, A.S.; Chittenden, J.P.

High gain in hotspot-ignition inertial confinement fusion (ICF) implosions requires the propagation of thermonuclear burn from a central hotspot to the surrounding cold dense fuel. As ICF experiments enter the burning plasma regime, diagnostic signatures of burn propagation must be identified. In previous work [A. J. Crilly et al., Phys. Plasmas 27(1), 012701 (2020)], it has been shown that the spectral shape of the neutron backscatter edges is sensitive to the dense fuel hydrodynamic conditions. The backscatter edges are prominent features in the ICF neutron spectrum produced by the 180° scattering of primary deuterium–tritium fusion neutrons from ions. In this work, synthetic neutron spectra from radiation-hydrodynamics simulations of burning ICF implosions are used to assess the backscatter edge analysis in a propagating burn regime. Significant changes to the edge's spectral shape are observed as the degree of burn increases, and a simplified analysis is developed to infer scatter-averaged fluid velocity and temperature. The backscatter analysis offers direct measurement of the increased dense fuel temperatures that result from burn propagation.

More Details
Results 6751–6775 of 99,299
Results 6751–6775 of 99,299