Publications

Results 92501–92600 of 96,771

Search results

Jump to search filters

The DOE/DOD Environmental Data Bank

C'De Baca, John E.

The DOE/DOD Environmental Data Bank was established in 1959 as a central location for storing weapons and equipment environments information from a variety of DOE, DOD, and industrial sources and continues to be maintained by Sandia National Laboratories. The Environmental Data Bank contains approximately 2,900 documents regarding normal and abnormal environments that describe the handling, storage, transportation, use, and general phases, which occur during the life of a weapon system. The Environmental Data Bank contains a vast assortment of resources that document crash, fire, and chemical environments resulting from aircraft, rail, ship, and truck accidents, as well as crash and thermal tests conducted on shipping containers. Also included are studies on the hazards of exposure to liquid natural gas fireballs, chemical fireballs, and hydrogen fireballs. This paper describes the DOE/DOD Environmental Data Bank system, its structure, data sources, and usage, with particular emphasis on its use for safety assessments at Sandia National Laboratories.

More Details

A comparison of commercial/industry and nuclear weapons safety concepts

Bennett, R.R.

In this paper the authors identify factors which influence the safety philosophy used in the US commercial/industrial sector and compare them against those factors which influence nuclear weapons safety. Commercial/industrial safety is guided by private and public safety standards. Generally, private safety standards tend to emphasize product reliability issues while public (i.e., government) safety standards tend to emphasize human factors issues. Safety in the nuclear weapons arena is driven by federal requirements and memoranda of understanding (MOUs) between the Departments of Defense and Energy. Safety is achieved through passive design features integrated into the nuclear weapon. Though the common strand between commercial/industrial and nuclear weapons safety is the minimization of risk posed to the general population (i.e., public safety), the authors found that each sector tends to employ a different safety approach to view and resolve high-consequence safety issues.

More Details

Russian surety research projects in the Sandia National Laboratories Cooperative Measures Program

Smith, R.E.

Over forty safety and security related research and development projects have been initiated between Sandia National Laboratories and the Russian nuclear weapons laboratories VNIIEF and VNIITF. About half of these projects have been completed. All relate to either safety or security methodology development, processes, accident environment analysis and testing, accident databases, assessments or product design of devices. All projects have a potential benefit to various safety or security programs and some may directly have commercial applications. In general, these projects could benefit risk assessments associated with systems that could result in accidents or incidents having high public consequences. These systems typically have already been engineered to have very low assessed probabilities of occurrence of such accidents or incidents. This paper gives an overview of the Sandia surety program with a focus on the potential for future collaboration between Sandia, three Russian Institutes; VNIIEF, VNIITF and VNIIA, and other industry and government organizations. The intent is to serve as an introduction to a roundtable session on Russian Safety Collaboration at the 14th International System Safety Conference. The current Sandia collaboration program scope and rationale is presented along with the evolved program focus. An overview of the projects is given and a few specific projects are briefly highlighted with tangible results to date.

More Details

Financial system loss as an example of high consequence, high frequency events

Mcgovern, D.E.

Much work has been devoted to high consequence events with low frequency of occurrence. Characteristic of these events are bridge failure (such as that of the Tacoma Narrows), building failure (such as the collapse of a walkway at a Kansas City hotel), or compromise of a major chemical containment system (such as at Bhopal, India). Such events, although rare, have an extreme personal, societal, and financial impact. An interesting variation is demonstrated by financial losses due to fraud and abuse in the money management system. The impact can be huge, entailing very high aggregate costs, but these are a result of the contribution of many small attacks and not the result of a single (or few) massive events. Public awareness is raised through publicized events such as the junk bond fraud perpetrated by Milikin or gross mismanagement in the failure of the Barings Bank through unsupervised trading activities by Leeson in Singapore. These event,s although seemingly large (financial losses may be on the order of several billion dollars), are but small contributors to the estimated $114 billion loss to all types of financial fraud in 1993. This paper explores the magnitude of financial system losses and identifies new areas for analysis of high consequence events including the potential effect of malevolent intent.

More Details

Russian risk assessment methods and approaches

Dvorack, Michael A.

One of the benefits resulting from the collapse of the Soviet Union is the increased dialogue currently taking place between American and Russian nuclear weapons scientists in various technical arenas. One of these arenas currently being investigated involves collaborative studies which illustrate how risk assessment is perceived and utilized in the Former Soviet Union (FSU). The collaborative studies indicate that, while similarities exist with respect to some methodologies, the assumptions and approaches in performing risk assessments were, and still are, somewhat different in the FSU as opposed to that in the US. The purpose of this paper is to highlight the present knowledge of risk assessment methodologies and philosophies within the two largest nuclear weapons laboratories of the Former Soviet Union, Arzamas-16 and Chelyabinsk-70. Furthermore, This paper will address the relative progress of new risk assessment methodologies, such as Fuzzy Logic, within the framework of current risk assessment methods at these two institutes.

More Details

Challenging and improving conceptual models for isothermal flow in unsaturated, fractured rock through exploration of small-scale processes

Glass, R.J.; Nicholl, M.J.; Tidwell, V.C.

Over the past several years, the authors have performed experimental studies focused on understanding small-scale flow processes within discrete fractures and individual matrix blocks; much of the understanding gained in that time differs from that underlying the basic assumptions used in effective media representations. Here they synthesize the process level understanding gained from their laboratory studies to explore how such small-scale processes may influence the behavior of fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the formulation of intermediate-scale effective media properties. They also explore, by means of a thought experiment, how these same small-scale processes could couple to produce a large-scale system response inconsistent with current conceptual models based on continuum representations of flow through unsaturated, fractured rock. Based on their findings, a number of modifications to existing dual permeability models are suggested that should allow them improved applicability; however, even with these modifications, it is likely that continuum representations of flow through unsaturated fractured rock will have limited validity and must therefore be applied with caution.

More Details

Ensuring critical event sequences in high integrity software by applying path expressions

Kidd, Marie-Elena C.

The goal of this work is to extend the use of existing path expression theory and methodologies to ensure that critical software event sequences are maintained even in the face of malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. This paper discusses the perceived problems, a brief overview of path expressions, and the author`s proposed extension areas. The authors discuss how the traditional path expression usage and implementation differs from the intended usage and implementation.

More Details

Phosphor synthesis routes and their effect on the performance of garnet phosphorus at low-voltages

Phillips, Mark L.

Garnet phosphors have potential for use in field emission displays (FEDs). Green-emitting Gd{sub 3}Ga{sub 5}O{sub 12}:Tb (GGG:Tb) and Y{sub 3}Al{sub 5}O{sub 12}:Tb (YAG:Tb) are possible alternatives to ZnO:Zn, because of their excellent resistance to burn, low-voltage efficiency, (3.5 lm/W from GGG:Tb at 800 V), and saturation resistance at high power densities. Hydrothermal and combustion synthesis techniques were employed to improve the low-voltage efficiency of YAG:Tb, and Y{sub 3}Ga{sub 5}O{sub 12}:Tb (YGG:Tb). Synthetic technique did not affect low-voltage (100--1,000 V) efficiency, but affected the particle size, morphology, and burn resistance. The small particle size phosphors obtained via hydrothermal (<1 {micro}m) and combustion reactions (<1 {micro}m) would benefit projection TV, high-definition TV (HDTV), and heads-up displays (HUDs), where smaller pixel sizes are required for high resolution.

More Details

Parametric study of compound semiconductor etching utilizing inductively coupled plasma source

Shul, Randy J.

Inductively Coupled Plasma (ICP) sources are extremely promising for large-area, high-ion density etching or deposition processes. In this review the authors compare results for GaAs and GaN etching with both ICP and Electron Cyclotron Resonance (ECR) sources on the same single-wafer platform. The ICP is shown to be capable of very high rates with excellent anisotropy for fabrication of GaAs vias or deep mesas in GaAs or GaN waveguide structures.

More Details

Information systems vulnerability: A systems analysis perspective

Wyss, Gregory D.

Vulnerability analyses for information systems are complicated because the systems are often geographically distributed. Sandia National Laboratories has assembled an interdisciplinary team to explore the applicability of probabilistic logic modeling (PLM) techniques (including vulnerability and vital area analysis) to examine the risks associated with networked information systems. The authors have found that the reliability and failure modes of many network technologies can be effectively assessed using fault trees and other PLM methods. The results of these models are compatible with an expanded set of vital area analysis techniques that can model both physical locations and virtual (logical) locations to identify both categories of vital areas simultaneously. These results can also be used with optimization techniques to direct the analyst toward the most cost-effective security solution.

More Details

Reduced polarization decay due to carrier in-scattering in a semiconductor active medium

Chow, Weng W.

The in-scattering processes, which reduce the decay of the active medium polarization, should be included in a consistent treatment of semiconductor laser gain. The in-scattering processes affect the laser gain by decreasing the influence of the high k-states, which contribute absorption to the spectrum. A theory, based on the semiconductor-Bloch equations with the effects of carrier-carrier scattering treated at the level of the quantum kinetic equations in the Markov limit, predicts gain spectra that do not exhibit absorption below the renormalized band gap, in agreement with experiment. When compared to gain calculations where the in-scattering contribution is neglected, the theory predicts markedly different properties for intrinsic laser parameters, such as peak gain, gain bandwidth, differential gain and carrier density at transparency, especially at low carrier densities.

More Details

Are safety, security, and dependability achievable in software?

Fletcher, S.K.

Critical software must be safe, secure, and dependable. Traditionally, these have been pursued as separate disciplines. This presentation looks at the traditional approaches and highlights commonalities and differences among them. Each can learn from the history of the others. More importantly, it is imperative to seek a systems approach which blends all three.

More Details

Validation of EMP bounds

Warne, Larry K.

Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

More Details

Biomedical technology prosperity game{trademark}

Berman, M.

Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

More Details

NMR spectroscopic investigations of surface and interlayer species on minerals, clays and other oxides

Cygan, Randall T.

The behavior of chemical species adsorbed on solid surfaces and exchanged into clay interlayers plays a significant role in controlling many natural and technologically important processes, including rheological behavior, catalysis, plant growth, transport in natural pore fluids and those near anthropogenic hazardous waste sites, and water-mineral interaction. Adsorption and exchange reactions have been the focus of intense study for many decades. Only more recently, however, have there been extensive spectroscopic studies of surface species. Among the spectroscopic methods useful for studying surface and exchanged species (e.g., infrared, X-ray photoelectron spectroscopy [XPS] and X-ray absorption spectroscopy [XAS]), nuclear magnetic resonance spectroscopy (NMR) has the considerable advantage of providing not only structural information via the chemical shift and quadrupole coupling constant but dynamical information in the Hz-mHz range via lineshape analysis and relaxation rate measurements. It is also possible to obtain data in the presence of a separate fluid phase, which is essential for many applications. This paper illustrates the range of applications of NMR methods to surface and exchanged species through review of recent work from our laboratory on Cs in clay interlayers and Cs, Na and phosphate adsorbed on oxide surfaces. The substrate materials used for these experiments and our long-term objectives are related to problems of geochemical interest, but the principals and techniques are of fundamental interest and applicable to a wide range of technological problems.

More Details

Visualization and animation as a technique to assist in the construction of high assurance software

Winter, V.L.

The software construction process consists of a mixture of informal and formal steps. By their very nature, informal steps cannot be formally verified. Empirical evidence suggests that a majority of software errors originate in the informal steps of the software development process. For this reason, when constructing high assurance software, it is essential that a significant effort be made to increase one`s confidence (i.e., to validate) that the informal steps have been made correctly. Visualization and animation can be used to provide an `intuitive proof` that the informal steps in the software construction process are correct. In addition, the formal portion of software construction often permits/demands artistic (informal) decisions to be made (e.g., design decisions). Such decisions often have unexpected/unforeseen consequences that are only discovered later in the development process. Visualization and animation techniques can be brought to bear on this aspect of the software construction process by providing a better intuitive understanding of the impact of the informal decisions that are made in program development. This increases the likelihood that undesirable decisions can be avoided or at least detected earlier in the development process.

More Details

Physical protection cooperation between US Department of Energy national laboratories and Special Scientific and Production State Enterprise (Eleron) of Russia

Williams, J.D.

US DOE national laboratories and Russian institutes are becoming increasingly cooperative in support of nonproliferation of nuclear materials. This paper describes completed projects, current work, and areas of possible future cooperation between US laboratories and a Russian Ministry of Atomic Energy (MINATOM) entity, Special Scientific and Production State Enterprise (SNPO). The Kurchatov Institute, SNPO, and the US national laboratories jointly completed a physical protection system (PPS) for a facility housing two reactors at Kurchatov Institute within a very short time frame in 1994. Spin- off projects from this work resulted in a US-witnessed acceptance test of the new system adhering to a procedure adopted in Russia, and visits by DOE laboratories` personnel to SNPO`s sensor development and test facilities at Dubna and Penza. SNPO was one of the MINATOM sites at which Lawrence Livermore National Laboratory and Sandia National Laboratories (SNL) conducted a vulnerability assessment training course. Current cooperative projects include additional physical protection upgrades at Kurchatov where SNPO is involved as an installer and supplier of sensors, alarm display, video, and fiber optic equipment. Two additional contracts between SNL and SNPO result in information on Russian sensor performance and cost and an exchange of US and Russian sensors. Russian sensors will be tested in the United States,a nd US sensors will be tested in Russia. Pacific Northwest Laboratory administers a contract to document the process of certifying physical protection equipment for use at MINATOM facilities. Recent interest in transportation security has opened a new area of cooperation between the national laboratories and SNPO. Future projects are expected to include SNPO participation in physical protection upgrades at other locations in Russia, pedestrian and vehicle portal development, positive personnel identifier testing, and the exchange and testing of additional equipment.

More Details

Comparison of passive soil vapor survey techniques at a Tijeras Arroyo site, Sandia National Laboratories, Albuquerque, New Mexico

Eberle, C.S.; Wade, W.M.; Tharp, T.; Brinkman, J.

Soil vapor surveys were performed to characterize the approximate location of soil contaminants at a hazardous waste site. The samplers were from two separate companies and a comparison was made between the results of the two techniques. These results will be used to design further investigations at the site.

More Details

Momentum transfer in indirect explosive drive

Fischer, S.H.

Material which is not in direct contact with detonating explosives may still be driven by the explosion through impact by driven material or by attachment to driven material. In such circumstances the assumption of inelastic collision permits estimation of the final velocity of an assemblage. Examples of the utility of this assumption are demonstrated through use of Gurney equations. The inelastic collision calculation may also be used for metal parts which are driven by explosives partially covering the metal. We offer a new discounting angle to account for side energy losses from laterally unconfined explosive charges in cases where the detonation wave travels parallel to the surface which is driven.

More Details

Precision guided parachute LDRD final report

Gilkey, Jeffrey C.

This report summarizes the results of the Precision Guided Parachute LDRD, a two year program at Sandia National Laboratories which developed a Global Positioning System (GPS) guided parachute capable of autonomous flight and landings. A detailed computer model of a gliding parachute was developed for software only simulations. A hardware in-the-loop simulator was developed and used for flight package system integration and design validation. Initial parachute drop tests were conducted at Sandia`s Coyote Canyon Cable Facility, followed by a series of airdrops using Ross Aircraft`s Twin Otter at the Burris Ranch Drop Zone. Final flights demonstrated in-flight wind estimation and the capability to fly a commanded heading. In the past, the cost and logistical complexity of an initial navigation system ruled out actively guiding a parachute. The advent of the low-cost, light-weight Global Positioning System (GPS) has eliminated this barrier. By using GPS position and velocity measurements, a guided parachute can autonomously steer itself to a targeted point on the ground through the use of control drums attached to the control lanyards of the parachute. By actively correcting for drop point errors and wind drift, the guidance accuracy of this system should be on the order of GPS position errors. This would be a significant improvement over unguided airdrops which may have errors of a mile or more.

More Details

LDRD final report on gas separation by fullerene membranes

Schirber, James E.

This LDRD (Laboratory Directed Research and Development) project was funded for two years beginning in October 1992 (FY93) and was designed as a multidisciplinary approach to determining the structural and physical properties of C{sub 60} intercalated with various gases. The purpose of the study was to evaluate the relative permeation and diffusion of various gases with an ultimate goal of finding an effective filter for gas separations. A variety of probes including NMR, X-ray and neutron diffraction; IR spectroscopy, thermogravimetric analysis and mass spectroscopy were employed on C{sub 60} impregnated with a number of gases including O{sub 2}, N{sub 2}, Ar, Ne, H{sub 2}, NO and CH{sub 4}. In order to increase the absorption and decrease the effective time constraints for bulk samples, these gases were intercalated into the C{sub 60} using pressures to several kbar. The results of these measurements which were quite encouraging for separation of O{sub 2} and N{sub 2} and for H{sub 2} from N{sub 2} led to 17 manuscripts which have been published in peer reviewed journals. The abstracts of these manuscripts are shown below along with a complete citation to the full text.

More Details

A simplified model of aerosol removal by natural processes in reactor containments

Powers, Dana A.

Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

More Details

Advanced materials development for multi-junction monolithic photovoltaic devices

Dawson, L.R.

We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

More Details

Solar heat pipe testing of the Stirling thermal motors 4-120 Stirling engine

Andraka, Charles E.

Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. A 25kW electric system takes advantage of existing Stirling-cycle engines and existing parabolic concentrator designs. In previous work, the concentrated sunlight impinged directly on the heater head tubes of the Stirling Thermal Motors (STM) 4-120 engine. A Sandia-designed felt-metal-wick heat pipe receiver was fitted to the STM 4-120 engine for on-sun testing on Sandia`s Test Bed Solar Concentrator. The heat pipe uses sodium metal as an intermediate two-phase heat transfer fluid. The receiver replaces the directly-illuminated heater head previously tested. The heat pipe receiver provides heat isothermally to the engine, and the heater head tube length is reduced, both resulting in improved engine performance. The receiver also has less thermal losses than the tube receiver. The heat pipe receiver design is based on Sandia`s second-generation felt-wick heat pipe receiver. This paper presents the interface design, and compares the heat pipe/engine test results to those of the directly-illuminated receiver/engine package.

More Details

Formation and polymerization of cyclic disilsesquioxanes

Loy, Douglas A.

Sol-gel polymerication of {alpha}, {omega}-bis(triethoxysilyl)alkanes normally leads to alkylene-bridged polysilsesquioxanes in the form of insoluble, highly crosslinked polymeric gels. Hydrolysis of the six ethoxide groups on each monomer gives silanols that then condense to form a network of siloxane bonds. Unlike most Sol-gel precursors, these flexible hydrocarbon-bridged monomers can participate not only in intermolecular condensation reactions that lead to polymeric networks, but in intramolecular condensation reactions leading to cyclic disilsesquioxanes as well. Partitioning between these two reaction manifolds should be an important determinant of the manner in which the network polymer is assembled and, be an important determinant of the manner in which the network polymer is assembled and, ultimately, the final morphologies of the crosslinked gels. The relative importance of the two pathways should be dependent on a variety of factors, including the reaction mechanism (acid or base catalysis), the concentration of {alpha}, {omega}(triethoxysilyl)alkane and, most importantly for this study, the length of the alkylene bridging group.

More Details

Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

Jow, H.N.

The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

More Details

Risk-based assessment of the surety of information systems

Jansma, R.

When software is used in safety-critical, security-critical, or mission-critical situations, it is imperative to understand and manage the risks involved. A risk assessment methodology and toolset have been developed which are specific to software systems and address a broad range of risks including security, safety, and correct operation. A unique aspect of this methodology is the use of a modeling technique that captures interactions and tradeoffs among risk mitigators. This paper describes the concepts and components of the methodology and presents its application to example systems.

More Details

Electrical discharge machining of type-N(f) microwave connectors

Haushalter, R.J.

A particular out-of-specification mechanical dimension on Type-N(f) [Type-N(female)] microwave connectors sometimes disqualifies otherwise perfectly acceptable microwave devices from being used in calibration systems. The Miniature Machining Group at Sandia National Laboratories applied a technique called Electrical Discharge Machining (EDM) to quickly and economically machine these devices without disassembly. In so doing, they facilitated the use of existing components without the need to purchase new devices. The technique also improves an uncertainty of calibration known as Mismatch Uncertainty by optimizing the reflection coefficient of the calibration test port. This effects a reduction in overall calibration uncertainties.

More Details

Sandia National Laboratories/New Mexico Environmental Baseline update--Revision 1.0

Wolff, Theodore A.

This report provides a baseline update to provide the background information necessary for personnel to prepare clear and consise NEPA documentation. The environment of the Sandia National Laboratories is described in this document, including the ecology, meteorology, climatology, seismology, emissions, cultural resources and land use, visual resources, noise pollution, transportation, and socioeconomics.

More Details

Sensitivity of hydrological performance assessment analysis to variations in material properties, conceptual models, and ventilation models

Sobolik, Steven R.

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface- based and underground testing. Analyses have been performed to support the design of an Exploratory Studies Facility (ESF) and the design of the tests performed as part of the characterization process, in order to ascertain that they have minimal impact on the natural ability of the site to isolate waste. The information in this report pertains to sensitivity studies evaluating previous hydrological performance assessment analyses to variation in the material properties, conceptual models, and ventilation models, and the implications of this sensitivity on previous recommendations supporting ESF design. This document contains information that has been used in preparing recommendations for Appendix I of the Exploratory Studies Facility Design Requirements document.

More Details

High definition ultrasound imaging for battlefield medical applications

Kwok, Kwan S.

A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

More Details

Security Equipment and Systems Certification Program (SESCP)

Steele, Basil J.

Sandia National Laboratories (SNL) and Underwriters Laboratories, Inc., (UL) have jointly established the Security Equipment and Systems Certification Program (SESCP). The goal of this program is to enhance industrial and national security by providing a nationally recognized method for making informed selection and use decisions when buying security equipment and systems. The SESCP will provide a coordinated structure for private and governmental security standardization review. Members will participate in meetings to identify security problems, develop ad-hoc subcommittees (as needed) to address these identified problems, and to maintain a communications network that encourages a meaningful exchange of ideas. This program will enhance national security by providing improved security equipment and security systems based on consistent, reliable standards and certification programs.

More Details

Corrosion of SA1388-1 diodes

Krska, C.; Stimetz, C.; Braithwaite, J.; Sorensen, R.; Hlava, P.

After 5 y storage at Allied Signal, a subassembly with SA1388-1 diodes failed testing and the cause was an unacceptable current leak rate in one of the diodes. This was traced to a CuS deposit in a single production lot of diodes; however only about 0.3% failed the specification. A study was performed to determine the cause and potential long-term significance of this problem. Probable cause was determined to be the P-bearing braze material not being compatible with the Ag immersion plating solution (cyanide-based) and to the storage environment containing sulfur.

More Details

Laser engineered net shaping (LENS) for the fabrication of metallic components

Griffith, M.L.

Solid free form fabrication is a fast growing automated manufacturing technology that has reduced the time between initial concept and fabrication. Starting with CAD renditions of new components, techniques such as stereolithography and selective laser sintering are being used to fabricate highly accurate complex 3-D objects using polymers. Together with investment casting, sacrificial polymeric objects are used to minimize cost and time to fabricate tooling used to make complex metal casting. This paper describes recent developments in LENS{trademark} (Laser Engineered Net Shaping) to fabricate the metal components {ital directly} from CAD solid models and thus further reduce the lead time. Like stereolithography or selective sintering, LENS builds metal parts line by line and layer by layer. Metal particles are injected into a laser beam where they are melted and deposited onto a substrate as a miniature weld pool. The trace of the laser beam on the substrate is driven by the definition of CAD models until the desired net-shaped densified metal component is produced.

More Details

Processing of aluminum 7075-T73 components after prolonged storage

Guilinger, Terry R.

Three years ago, production requirements for a T73-tempered aluminium 7075 (Al 7075-T73) component were curtailed and the ``in-process`` parts were stored. During recent attempts to complete processing, visible defects were discovered in this component. Defects at such an early stage in the 20+ year lifetime of the component pose reliability concerns. Chemical and microstructural analysis, mechanical testing, and corrosion evaluation were performed to determine the impact of the defects on material properties.

More Details

Design and analysis of the PBFA-Z vacuum insulator stack

Spielman, Rick B.

Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.

More Details

ECR, ICP, and RIE plasma etching of GaN

Shul, Randy J.

The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

More Details

The use of fuzzy mathematics in subjective uncertainty analysis

Cooper, Arlin C.

We have been investigating the applicability of fuzzy mathematics in safety assessments (PSAs). It is a very efficient approach, both in terms of methodology development time and program execution time. Most importantly, it processes subjective information subjectively, not as if it were based on measured data. One of the most useful results of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy mathematics analysis and conventional PSA analysis. This difference is due to subtle factors inherent in the choice of probability distributions for modeling uncertainty. Since subjective uncertainty, stochastic variability, and dependence are all parts of most practical situations, a technique has been developed for combining the three effects. The methodology is based on hybrid numbers and on Frechet inequality dependency bounds analysis. Some new results have also been obtained in the areas of efficient disjoint set representations and constrained uncertainty and variability analysis.

More Details

PAMTRAK: A personnel and material tracking system

Anspach, D.A.; Anspach, J.P.; Walters, B.G.; Crain Jr., B.

There is a need for an automated system for protecting and monitoring sensitive or classified parts and material. Sandia has developed a real-time personnel and material tracking system (PAMTRAK) that has been installed at selected DOE facilities. It safeguards sensitive parts and material by tracking tags worn by personnel and by monitoring sensors attached to the parts or material. It includes remote control and alarm display capabilities and a complementary program in Keyhole to display measured material attributes remotely. This paper describes the design goals, the system components, current installations, and the benefits a site can expect when using PAMTRAK.

More Details

Design of a knowledge-based welding advisor

Kleban, S.D.

Expert system implementation can take numerous forms ranging form traditional declarative rule-based systems with if-then syntax to imperative programming languages that capture expertise in procedural code. The artificial intelligence community generally thinks of expert systems as rules or rule-bases and an inference engine to process the knowledge. The welding advisor developed at Sandia National Laboratories and described in this paper deviates from this by codifying expertise using object representation and methods. Objects allow computer scientists to model the world as humans perceive it giving us a very natural way to encode expert knowledge. The design of the welding advisor, which generates and evaluates solutions, will be compared and contrasted to a traditional rule- based system.

More Details

An examination of the consequences in high consequence operations

Spray, S.D.; Cooper, J.A.

Traditional definitions of risk partition concern into the probability of occurrence and the consequence of the event. Most safety analyses focus on probabilistic assessment of an occurrence and the amount of some measurable result of the event, but the real meaning of the ``consequence`` partition is usually afforded less attention. In particular, acceptable social consequence (consequence accepted by the public) frequently differs significantly from the metrics commonly proposed by risk analysts. This paper addresses some of the important system development issues associated with consequences, focusing on ``high consequence operations safety.``

More Details

An atomic view of cluster diffusion on metal surfaces

Kellogg, Gary L.

Field ion microscopy show a strong correlation between mobility and shape of small clusters on fcc(100) metal surfaces. For self-diffusion on Rh(100) this correlation lead to an oscillatory behavior in the activation energy of surface diffusion as a function of cluster size. Comparison of measured activation energies to theory indicate that the mechanism of cluster diffusion involves individual displacements of edge atoms (ie, perimeter diffusion). Rate-determining step in migration of clusters is partial detachment of one of the perimeter atoms. Relative ease of adatom motion along straight edges of stationary clusters also permits measurements of diffusion barriers at steps, which can be useful in interpretation of fractal vs compact island growth on fcc metal surfaces.

More Details

Comparison of GaAs JFETs to MESFETs for high-temperature operation

Zolper, J.C.

GaAs-based Metal Semiconductor Field Effect transistors (MESFETs) and High Electron Mobility Transistors (HEMTs) have been the focus of research for high-temperature operation due to the 1.42 eV band gap of GaAs that reduces thermal carrier generation as compared to 1.1 eV silicon-based electronics. Although schemes have been proposed to minimize substrate currents at elevated temperatures, high-temperature operation of these devices is ultimately limited by the gate leakage current of the Schottky gate contact. Since a Junction Field Effect Transistor (JFET) has a higher gate barrier to current flow than a Schottky barrier MESFET as a result of the p/n junction gate, JFETs should have superior performance at elevated temperatures. This paper compares the high-temperature performance of a self-aligned GaAs MESFET and JFET. Both devices suffer from substrate leakage at high temperature; however, the JFET has superior gate characteristics and maintains a larger fraction of its room temperature transconductance at 300 C.

More Details

Chemical class specificity using self-assembled monolayers on SAW devices

Thomas, R.C.

We have studied the chemical selectivity and sensitivity of surface acoustic wave (SAW) sensors covered by (COO{sup {minus}}){sub 2}/Cu{sup 2+}-terminated interfaces by examining the response of self-assembled monolayer (SAM) films formed from the solution phase for 36, 84, and 180 h adsorption times. These organomercaptan SAMs were prepared on thin-film Au surfaces having variable, controlled grain size. The SAW response from the carboxylate coordinated Cu{sup 2+}-terminated SAM is compared to that from methyl-terminated SAM, as these films interact with a vapor-phase organophosphonate analyte and the vapors of common organic solvents. Results have implications for designing and reliably fabricating chemical sensors that respond to specific organic analytes.

More Details

III-Nitride ion implantation and device processing

Zolper, J.C.

Ion implantation doping and isolation has played a critical role in realizing high performance photonic and electronic devices in all mature semiconductor materials; this is also expected for binary III-Nitride materials (InN, GaN, AlN) and their alloys as epitaxy improves and more advanced device structures fabricated. This paper reports on recent progress in ion implantation doping of III-Nitride materials that has led to the first demonstration of a GaN JFET (junction field effect transistor). The JFET was fabricated with all ion implantation doping; in particular, p-type doping of GaN with Ca has been demonstrated with an estimated acceptor ionization energy of 169 meV. O-implantation has also been studied and shown to yield n-type conduction with an ionization energy of {similar_to}29 meV. Neither Ca or O display measurable redistribution during a 1125 C, 15 s activation anneal which sets an upper limit on their diffusivity at this temperature of 2.7{times}10{sup {minus}13}cm{sup 2}/s.

More Details

Security technologies and protocols for Asynchronous Transfer Mode networks

Tarman, Thomas D.

Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

More Details

Optimizing robot placement for visit-point tasks

Hwang, Y.K.

We present a manipulator placement algorithm for minimizing the length of the manipulator motion performing a visit-point task such as spot welding. Given a set of points for the tool of a manipulator to visit, our algorithm finds the shortest robot motion required to visit the points from each possible base configuration. The base configurations resulting in the shortest motion is selected as the optimal robot placement. The shortest robot motion required for visiting multiple points from a given base configuration is computed using a variant of the traveling salesman algorithm in the robot joint space and a point-to-point path planner that plans collision free robot paths between two configurations. Our robot placement algorithm is expected to reduce the robot cycle time during visit- point tasks, as well as speeding up the robot set-up process when building a manufacturing line.

More Details

Critics and advisors: Heuristic knowledge and manufacturability

Rivera, J.J.; Stubblefield, W.A.; Ames, A.L.

In recent years, much of the progress in Computer-Aided Manufacturing has emphasized the use of simulation, finite-element analysis, and other science-based techniques to plan and evaluate manufacturing processes. These approaches are all based on the idea that we can build sufficiently faithful models of complex manufacturing processes such as machining, welding, and casting. Although there has been considerable progress in this area, it continues to suffer from difficulties: the first of these is that the kind of highly accurate models that this approach requires may take many person months to construct, and the second is the large amount of computing resources needed to run these simulations. Two design advisors, Near Net-Shape Advisor and Design for Machinability Advisor, are being developed to explore the role of heuristic, knowledge-based systems for manufacturing processes, both as an alternative to more analytical techniques, and also in support of these techniques. Currently the advisors are both in the prototype stage. All indications lead to the conclusion that the advisors will be successful and lay the groundwork for additional systems such as these in the future.

More Details

Enhanced performance discharges in the DIII-D tokamak with lighium wall conditioning

Wampler, William R.

Lithium wall conditioning has been used in a recent campaign evaluating high performance negative central shear (NCS) discharges. During this campaign, the highest values of stored energy (4.4 MJ), neutron rate (2.4 x 10{sup 16}/s), and nT{sub i}{tau} (7 x 10{sup 20} m{sup -3}-keV-s) achieved to date in DIII-D were obtained. High performance NCS discharges were achieved prior to beginning lithium conditioning, but it is clear that shot reproducibility and performance were improved by lithium conditioning. Central and edge oxygen concentrations were reduced after lithium conditioning, Lithium conditioning, consisting of up to four pellets injected at the end of the preceding discharge, allowed the duration of the usual inter-shot helium glow discharge to be reduced and reproducible high auxiliary power discharges, P{sub NBI} {<=} 22 MW, were obtained with plasma currents up to 2.4 MA.

More Details

History of US nuclear weapon safety assessment: The early years

Spray, S.D.

From the beginnings of the U.S. nuclear weapons program, military and civilian dual- agency judgment has been fundamental to achieving nuclear weapon and weapon system safety. This interaction was initiated by the Atomic Energy Act of 1946, which created the Atomic Energy Commission (AEC). The principle of using dual-agency judgment has been perpetuated in the design and assessment of the weapon and weapon system acceptance process since that time. This fundamental approach is still used today in all phases of the weapon life. In this paper, an overview of the history and philosophy of the approach is described.

More Details

Periodic mesoporous silica gels

Anderson, M.T.

We have synthesized monolithic particulate gels of periodic mesoporous silica by adding tetramethoxysilane to a homogeneous alkaline micellar precursor solution. The gels exhibit 5 characteristic length scales over 4 orders of magnitude: fractal domains larger than the particle size (>500 nm), particles that are {approximately}150 to 500 nm in diameter, interparticle pores that are on the order of the particle size, a feature in the gas adsorption measurements that indicates pores {approximately}10-50 nm, and periodic hexagonal arrays of {approximately}3 nm channels within each particle. The wet gel monoliths exhibit calculated densities as low as {approximately}0.02 g/cc; the dried and calcined gels have bulk densities that range from {approximately}0.3-0.5 g/cc. The materials possess large interparticle ({approximately}1.0-2.3 cc/g) and intraparticle ({approximately}0.6 cc/g) porosities.

More Details

Microstructure and momentum transport in concentrated suspensions

Mondy, L.A.

This paper reviews several coupled theoretical and experimental investigations of the effect of microstructure on momentum transport in concentrated suspensions. An expression to predict the apparent suspension viscosity of mixtures of rods and spheres is developed and verified with falling-ball viscometry experiments. The effects of suspension-scale slip (relative to the bulk continuum) are studied with a sensitive spinning-ball rheometer, and the results are explained with a novel theoretical method. The first noninvasive, nuclear magnetic resonance imaging measurements of the evolution of velocity and concentration profiles in pressure-driven entrance flows of initially well mixed suspensions in a circular conduit are described, as well as more complex two-dimensional flows with recirculation, e.g. flow in a journal bearing. These data in nonhomogeneous flows and complementary three-dimensional video imaging of individual tracer particles in homogeneous flows are providing much needed information on the effects of flow on particle interactions and effective theological properties at the macroscale.

More Details

Basic issues associated with four potential EUV resist schemes

Wheeler, David R.

Four of the better developed resist schemes that are outgrowths of DUV (248 and 193 nm) resist development are considered as candidates for EUV. They are as follows: trilayer, a thin imaging layer on top of a refractor masking/pattern transfer layer on top of a planarizing and processing layer (PPL); solution developed, organometallic bilayer where the imaging and masking layer have been combined into one material on top of a PPL; and finally silylated resists. They are examined in a very general form without regard to the specifics of chemistry of the variations within each group, but rather to what is common to each group and how that affects their effectiveness as candidates for a near term EUV resist. In particular they are examined with respect to sensitivity, potential resolution, optical density, etching selectivity during pattern transfer, and any issues associated with pattern fidelity such as swelling.

More Details

Metal oxide coatings for piezoelectric exhaust gas sensors

Anderson, M.T.

We have deposited ZrO{sub 2}, TiO{sub 2}, and SnO{sub 2} films on ST-cut quartz surface acoustic wave (SAW) devices via sol-gel techniques. The films range from 100 to 300 nm thick and have porosities after calcination at 300{degrees}C that range from 82-88 % for ZrO{sub 2}, 77-81% for TiO{sub 2}, and 57-66% for SnO{sub 2}. In all cases, we have varied the synthesis and processing parameters over a wide range to optimize film properties: metal ion concentration (0.05-1.0 M), the H{sub 2}O:metal ratio (0.3-5.3), the acid concentration in the sol (0.02-0.7 M), the modifier ligand:metal ratio (r = 0.0-1.0), the processing conditions (100-900{degrees}C). The modifier ligand, triethanolamine (TEA), is added to each solution to allow multilayer films to be made crack free. The multilayer films are studied by optical microscopy, ellipsometry, X-ray diffraction, and N{sub 2} sorption. Preliminary high temperature frequency response measurements to target gases, such as, H{sub 2}, NO, NO{sub 2}, and propylene indicate limited sensitivity for the configurations tested.

More Details

Cross-condensation kinetics of organically modified silica sols

Assink, Roger A.

The hydrolysis and self- and cross-condensation kinetics of the hybrid sol tetraethoxysilane and ethyltriethoxysilane were investigated by high resolution {sup 29}Si NMR spectroscopy. A kinetic model in which hydrolysis is reversible and condensation is irreversible was developed. The authors found excellent agreement between the product distributions measured by {sup 29}Si NMR spectroscopy and calculated by the model. The cross-condensation rates for each of the sols were intermediate to the condensation rates of the individual components. Calculations show that for these sols, the concentration of cross-condensed species is a weak function of the relative rates of self-condensation.

More Details

Phase formation and characterization of the SrBi{sub 2}Ta{sub 2}O{sub 9} layered-perovskite ferroelectric

Rodriguez, M.A.

The Sr-Bi-Ta-O system is of interest for thin-film non-volatile ferroelectric memories. A better understanding of the process by which the perovskite phase forms can provide insight for improved processing of this ferroelectric compound. The authors have prepared thin-films by a chemical method using Sr-acetate, Bi-acetate and Ta-ethoxide; cation ratios were {approximately} 1:2:2 for Sr, Bi, and Ta, respectively. Results of in-situ crystallization studies using High-Temperature Grazing-Incidence X-ray Diffraction (HTGIXRD) have demonstrated that a fluorite structure, forming in the {approximately}600--700 C range, acts as an intermediate phase prior to the crystallization of the perovskite. Additional samples with cation ratios of {approximately} 1:0.8:2 were also investigated. Results for samples prepared with the 0.8 Bi content indicated that a pyrochlor phase forms which contains a substantial deficiency in Bi compared to the composition of the perovskite phase. The structures of the pyrochlore and fluorite phases and their relation to the formation of the perovskite ferroelectric are discussed.

More Details

Nanoparticle synthesis in pulsed low temperature discharges

Buss, Richard J.

Silicon nitride powders with an average size as low as 7 nm are synthesized in a pulsed radio frequency glow discharge. The as-synthesized silicon nitride powder from a silane/ammonia plasma has a high hydrogen content and is sensitive to oxidation in air. Post-plasma heating of the powder in a vacuum results in nitrogen loss, giving silicon-rich powder. In contrast, heat treatment at 800 C for 20 minutes in an ammonia atmosphere (200 Torr pressure) yields a hydrogen-free powder which is stable with respect to atmospheric oxidation. Several approaches to synthesizing silicon carbide nano-size powders are presented. Experiments using silane/hydrocarbon plasmas produce particles with a high hydrogen content as demonstrated by Fourier transform infrared analysis. The hydrogen is present as both CH and SiH functionality. These powders are extremely air-sensitive. A second approach uses a gas mixture of methyltrichlorosilane and hydrogen. The particles have a low hydrogen content and resist oxidation. Particle morphology of the silicon carbide is more spherical and there is less agglomeration than is observed in the silicon nitride powder.

More Details

Capillary stress in microporous thin films

Samuel, J.

Development of capillary stress in porous xerogels, although ubiquitous, has not been systematically studied. The authors have used the beam bending technique to measure stress isotherms of microporous thin films prepared by a sol-gel route. The thin films were prepared on deformable silicon substrates which were then placed in a vacuum system. The automated measurement was carried out by monitoring the deflection of a laser reflected off the substrate while changing the overlying relative pressure of various solvents. The magnitude of the macroscopic bending stress was found to reach a value of 180 MPa at a relative pressure of methanol, P/Po = 0.001. The observed stress is determined by the pore size distribution and is an order of magnitude smaller in mesoporous thin films. Density Functional Theory (DFT) indicates that for the microporous materials, the stress at saturation is compressive and drops as the relative pressure is reduced.

More Details

Images and spectra of inhibited light propagation in a 2-dimensional photonic lattice at 1.5 {micro}m

Gourley, Paul L.

Using infrared light scattering microscopy, the authors have directly observed the inhibition of photon propagation in a 2-dimensional photonic lattice fabricated as a hexagonal array of AlGaAs posts. The lattice was formed by reactive ion etching of {approximately}400 nm diameter posts defined by electron beam lithography. The lattice design parameters correspond to a photonic bandgap near 1.5 {micro}m as calculated by Meade et al. This hexagonal array of posts is an improvement over early honeycomb lattices because it is easier to fabricate. The photonic lattice of 1.4 {micro}m high posts was incorporated into waveguide designed for single mode at 1.5 {micro}m. Several waveguide/lattice combinations were fabricated, including M-bar and K-bar lattice orientations aligned parallel to the waveguide and different numbers of lattice periods. The waveguide/lattice structures were fabricated on GaAs substrates that were subsequently thinned and cleaved to couple light into the waveguide facets. Using a specially designed triple infrared microscope system, they simultaneously imaged the input and output facets and the top surface of the waveguide as laser light was focused onto the input facet. Because of internal scattering in the waveguide, light is scattered upward outward and can be imaged with an infrared camera. Images for reflected input, waveguide scattered light, and transmitted output light for the waveguide with (left images) and without the photonic lattice (right images) are shown. The lefthand image shows how the lattice interrupts the transport of light through the waveguide.

More Details

Mechanism for control plane authentication

Tarman, Thomas D.

The purpose of this contribution is to propose an ``Authentication Information Element`` that can be used to carry authentication information within the ATM signaling protocols. This information may be used by either signaling entity to validate the claimed identity of the other, and to verify the integrity of a portion of a message`s contents. By specifying a generic authentication IE, authentication information can be generated by any signature algorithm, and can be appended to any ATM signaling message. Procedures for the use of this information element are also provided.

More Details

Software testing process improvements

Knirk, Dwayne L.

Software process improvement has become a popular pastime, for a variety of reasons. The Software Engineering Institute`s summary of experimental data, which resulted in the Capability Maturity Model, has now had considerable corroboration. There are nearly as many software processes as there are combinations of developers, users, and products. Similarly, there are probably as many software process improvement approaches. However, the meta-process for performing process improvement is quite straightforward. Processes can be represented by a small number of abstractions, with variety supplied through implementation details. The scheme for improvement is almost self-evident: figure out where you are now, use a software process maturity guide to identify shortcomings, plot a change in a direction to eliminate a shortcoming, and go for it. This paper won`t dwell on the meta process and its enactment; the authors simply assume one is in place. Rather, they consider some ways to improve the testing aspects of your software process. These may be changes in what you do for testing as well as in how you do it.

More Details

Gallium nitride junction field effect transistors for high-temperature operation

Zolper, J.C.

GaN is an attractive material for use in high-temperature or high-power electronic devices due to its high bandgap (3.39 eV), high breakdown field ({approximately}5 {times} 10{sup 6} V/cm), high saturation drift velocity (2.7 {times} 10{sup 7} cm/s), and chemical inertness. To this end, Metal Semiconductor FETs (MESFETs), High Electron Mobility Transistors (HEMTs), Heterostructure FETs (HFETs), and Metal Insulator Semiconductor FETs (MISFETs) have all been reported based on epitaxial AlN/GaN structures (Khan 1993a,b; Binari 1994 and 1995). GaN Junction Field Effect Transistors (JFETs), however, had not been reported until recently (Zolper 1996b). JFETs are attractive for high-temperature operation due to the inherently higher thermal stability of the p/n junction gate of a JFET as compared to the Schottky barrier gate of a MESFET or HFET. In this paper the authors present the first results for elevated temperature performance of a GaN JFET. Although the forward gate properties are well behaved at higher temperatures, the reverse characteristics show increased leakage at elevated temperature. However, the increased date leakage alone does not explain the observed increase in drain current with temperature. Therefore, they believe this first device is limited by temperature activated substrate conduction.

More Details

The in-situ generation of silica reinforcement in modified polydimethylsiloxane elastomers

Assink, Roger A.

Structure and properties of a series of modified polydimethylsiloxane (PDMS) elastomers reinforced by {ital in situ} generated silic particles were investigated. The PDMS elastomer was modified by systematically varying the molecular weight between reactive groups incorporated into the backbone. Tetraethoxysilane (TEOS) and partial hydrolyzate of TEOS were used to generate silic particles. Chemistry and phase structure of the materials were investigated by {sup 29}Si magic angle spinning nuclear magnetic resonance spectroscopy and swelling experiments.

More Details

High temperature stable W and WSi{sub x} ohmic contacts on GaN and InGaN

Zolper, John C.

Conventional III-V metallizations chemes such as Au/Ge/Ni, Ti/Pt/Au, and Au/Be were found to display poor thermal stability on both GaN and InGaN, with extensive reaction and contact degradation at {le}500 C. By contrast, W was found to produce low contact resistance ({rho}{sub c}{similar_to}8x10{sup -5}{Omega}cm{sup 2}) to n-GaN. Ga outdiffusion to the surface of thin (500 A) W films was found after annealing at 1,100 C, but not at 1000 C. Interfacial abruptness increased by 300A after 1,100 C annealing. In the case of WSi{sub X} (X=0.45), Ga outdiffusion was absent even at 1,100 C, but again there was interfacial broadening and some phase changes in the WSi{sub X}. On In{sub 0.5}Ga{sub 0.5}N, a minimum specific contact resistivity of 1.5 x10{sup -5}{Omega}cm{sup 2} was obtained for WSi{sub X} annealed at 700 C. These contacts retained a smooth morphology and abrupt interfaces to 800 C. Graded In{sub X}Ga{sub 1-X}N layers have been employed on GaAs/AlGaAs HBTs (heterojunction bipolar transistors), replacing conventional In{sub X}Ga{sub 1-X}As layers. R{sub C} values of 5x10{sup -7}{Omega}cm{sup 2} were obtained for nonalloyed Ti/Pt/Au on the InGaN, and the morphologies were superior to those of InGaAs contact layers. This proves to have significant advantages for fabrication of sub-micron HBTs. Devices with emitter dimensions of 2x5{mu}m{sup 2} displayed gains of 35 for a base doping level of 7x10{sup 19}cm{sup -3} and stable long-term behavior.

More Details

Mass-producible micro-holographic tags

Sweatt, W.C.

Microtags are microscopic computer-generated holograms with 130-nm features and are mass-producible with EUVL. This fabrication method renders microtags difficult to counterfeit. Applications includ tagging and tracking of microprocessors, memory chips, currencey, and credit cards.

More Details

Fragmentation properties of metals

Kipp, Marlin E.

In the present study we are developing an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests, both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

More Details

On the pressure induced phase of Na{sub 2}CsC{sub 60}

Morosin, Bruno M.

Neutron powder diffraction at pressures to 6 kbar in gaseous Ne has been used to study the pressure-induced phase transition and compressibilities of Na{sub 2}CsC{sub 60}. The pressure-induced phase can be achieved by compression to about 5 kbar at room temperature. If cooled, this phase can be retained below 200 K upon release of the pressure. The structure is orthorhombic as previously reported (but may differ in its detailed crystal structure) with lattice constants near 80 K and ambient pressure of a=9.385 A, b=10.06 A, and c=14.36 A. Corresponding linear compressibilities are 0.0004, 0014, and 0.0017 kbar{sup -1}, respectively. Identical pressure temperature cycling results in a superconductor with an unexpectedly low pressure dependence for {Tc} while in this phase. Models for the superconducting behavior of this compound are discussed.

More Details

Rapid prototype and test

Gregory, D.L.; Hansche, B.D.

In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

More Details

W, WSi{sub x} and Ti/Al low resistance OHMIC contacts to InGaN, InN and InAlN

Shul, Randy J.

W, WSi{sub 0.44} and Ti/Al contacts were examined on n{sup +} In{sub 0.65}Ga{sub 0.35}N, InN and In{sub 0.75}Al{sub 0.25}N. W was found to produce low specific contact resistance ({rho}{sub c} {approximately} 10{sup {minus}7} {Omega} {center_dot}cm{sup 2}) ohmic contacts to InGaN, with significant reaction between metal and semiconductor at 900 {degrees}C mainly due to out diffusion of In and N. WSi{sub x} showed an as-deposited {rho}{sub c} of 4{times}10{sup {minus}7} {Omega} {center_dot}cm{sup 2} but this degraded significantly with subsequent annealing. Ti/Al contacts were stable to {approximately} 600 {degrees}C ({rho}{sub c} {approximately} 4{times}10{sup {minus}7} {Omega} {center_dot}cm{sup 2} at {le}600 {degrees}C). The surfaces of these contacts remain smooth to 800 {degrees}C for W and WSi{sub x} and 650 {degrees}C for Ti/Al. InN contacted with W and Ti/Al produced ohmic contacts with {rho}{sub c} {approximately} 10{sup {minus}7} {Omega} {center_dot}cm{sup 2} and for WSi{sub x} {rho}{sub c} {approximately} 10{sup {minus}6} {Omega} {center_dot}cm{sup 2}. All remained smooth to {approximately} 600 {degrees}C, but exhibited significant interdiffusion of In, N, W and Ti respectively at higher temperatures. The contact resistances for all three metalization schemes were {ge} 10{sup {minus}4} {Omega} {center_dot}cm{sup 2} on InAlN, and degrades with subsequent annealing. The Ti/Al was found to react with the InAlN above 400 {degrees}C, causing the contact resistance to increase rapidly. W and WSi{sub x} proved to be more stable with {rho}{sub c} {approximately} 10{sup {minus}2} and 10{sup {minus}3} {Omega} {center_dot}cm{sup 2} up to 650 {degrees}C and 700 {degrees}C respectively.

More Details

Codes, standards, and PV power systems. A 1996 status report

Bower, Ward I.

As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

More Details

Explosively-driven magnetohydrodynamic generator: Phase II

Vigil, Manuel G.

Phase II work for this Laboratory Directed Research and Development project is presented. Historically, high velocity, solid, electrically conducting armatures or projectiles have been utilized to generate or magnify existing electric fields in magnetohydrodynamic (MHD) devices. Useful power can be extracted from high velocity ionized, electrically conductive plasma jets. The MHD device current output can be switched to power other devices. The purpose of this project is to investigate the use of an Explosively-Driven Ionized Plasma Jet Generator (EDMG) to more efficiently obtain velocities much higher than can be achieved with solid armatures or projectiles. The armature velocity is one of the more important parameters in the electric field magnification process. The ionized plasma jet is generated by explosively collapsing a gas (neon, argon, xenon, hydrogen) filled cavity and directing the jet through a shocktube or core of an MHD device. Data are presented for two different size and configuration explosive drivers, one explosive (COMP-C4), one gas (argon), different driver pressures (90-200 psia), different shocktube or test section pressures (0.01-11.7 psia), and for two different shocktube inside dimensions. Measured time-of-arrival, current, voltage, resistance, power and energy data are presented for tests conducted. Measured time-of-arrival and plasma flow velocity data are compared to the predicted CTH hydrocode data. CTH code calculations are also presented to compare EDMG performance of various test gases and various explosive liner materials.

More Details

Protection and surveillance of nuclear materials in the former Soviet Union

Darnell-Horton, R.

The International Security Program Initiative at Sandia National Laboratories (SNL) is dedicated to achieving a global nuclear security structure that reduces the danger of nuclear and other weapons of mass destruction. SNL is the principle Department of Energy (DOE) laboratory, jointly funded by the DOE and the Department of Defense (DoD), and is responsible for developing technology, concepts, and hardware to protect nuclear weapons and materials at facilities, and during transportation. SNL is working cooperatively with scientists and engineers in various institutes, laboratories, and other organizations within the countries of the Former Soviet Union (FSU) to reduce the risk of nuclear weapons proliferation. One major step toward achieving worldwide protection and control of nuclear materials and weapons proliferation is being accomplished by the DOE National Laboratories on work with the FSU in the area of Material Protection, Control, and Accountability (MPC&A). This report focuses on the accomplishments and status of work under the MPC&A program at Sandia. In addition, brief summaries of other areas of FSU cooperation are included such as Industrial Partnering Program (IPP); Lab-to-Lab; Safe and Secure Dismantlement (SSD); Safety and Security Technology; and Energy and Environment.

More Details

Near perfect optics

Sweatt, W.C.

This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost of visible region optics with aspheric surfaces.

More Details

Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

Gardner, Timothy J.

Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

More Details

Vale exploratory slimhole: Drilling and testing

Finger, John T.

During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

More Details

Toxicology evaluation and hazard review for non-CFC containing rigid foams BKC 44317 and last-a-foam MSL-02A

Greulich, K.A.

New pour-in-place, low density, rigid polyurethane foam kits have been developed to mechanically stabilize damaged explosive ordnance. Although earlier foam systems used chlorofluorocarbons as blowing agents, the current versions rely on carbon dioxide generated by the reaction of isocynates with water. In addition, these kits were developed to manually generate small quantifies of rigid foam in the field with minimal or no protective equipment. The purpose of this study was to evaluate and summarize available hazard information for the components of these rigid foam kits and to provide recommendations for personal protective equipment to be used while performing the manual combination of the components. As with most rigid foam systems, these kits consist of two parts, one a mixture of isocyanates; the other, a combination of polyols, surfactants, and amine catalysts. Once completely deployed, the rigid foam is non-toxic. The components, however, have some important health effects which must be considered when establishing handling procedures.

More Details

High temperature solder alloys for underhood applications: Final report

Drewien, Celeste A.

In this continued study, the microstructural evolution and peel strength as a function of thermal aging were evaluated for four Sn-Ag solders deposited on double layered Ag-Pt metallization. Additionally, activation energies for intermetallic growth over the temperature range of 134 to 190{degrees}C were obtained through thickness measurements of the Ag-Sn intermetallic that formed at the solder-metallization interface. It was found that Bi-containing solders yielded higher activation energies for the intermetallic growth, leading to thicker intermetallic layers at 175 and 190{degrees}C for times of 542 and 20.5 hrs, respectively, than the solders free of Bi. Complete reaction of the solder with the metallization occurred and lower peel strengths were measured on the Bi-containing solders. In all solder systems, a Ag-Sn intermetallic thickness of greater than {approximately}7 {mu}m contributed to lower peel strength values. The Ag-Sn binary eutectic composition and the Ag-Sn-Cu ternary eutectic composition solders yielded lower activation energies for intermetallic formation, less microstructural change with time, and higher peel strengths; these solder systems were resilient to the effects of temperatures up to 175{degrees}C. Accelerated isothermal aging studies provide useful criteria for recommendation of materials systems. The Sn-Ag and Sn-Ag-Cu eutectic compositions should be considered for future service life and reliability studies based upon their performance in this study.

More Details

Simulation of multicomponent evaporation in electron beam melting and refining

Van Den Avyle, James A.

Experimental results and a mathematical model are presented to describe differential evaporation rates in electron beam melting of titanium alloys containing aluminum and vanadium. Experiments characterized the evaporation rate of commercially pure titanium, and vapor composition over titanium with up to 6% Al and 4.5% V content as a function of beam power, scan frequency and background pressure. The model is made up of a steady-state heat and mass transport model of a melting hearth and a model of transient thermal and flow behavior near the surface. Activity coefficients for aluminum and vanadium in titanium are roughly estimated by fitting model parameters to experimental results. Based on the ability to vary evaporation rate by 10-15% using scan frequency alone, we discuss the possibility of on-line composition control by means of intelligent manipulation of the electron beam.

More Details

LDRD final report on polyphosphaacetylenes, new hybrid conducting organic-inorganic materials

Jamison, Gregory M.

Thermal, electrochemical and transition metal mediated reactions of phosphaacetylene monomers were conducted in attempts to form novel polyphosphaacetylenes as a new class of potentially electrically conducting polymers. Molecular modeling was used to simulate the molecular conformations of optimized, isolated oligomers to identify the proper monomeric repeat units for highly conjugated molecules. Electrodeposition of suitable monomers led to low molecular weight oligomers. Thermal polymerization of phosphaacetylene monomers bearing aromatic substituents ed to the formation of polyhedral cage oligomers. Under metathesis polymerization conditions the phosphaacetylene monomers form unique complexes via an unprecedented sequence of intermediates which suggest that metathesis to linear oligomers is achievable. Conductivity measurements on electrodeposited oligomers indicate modest electrical conductivity.

More Details

Systems engineering analysis of kinetic energy weapon concepts

Senglaub, Michael E.

This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

More Details

The role of anode and cathode plasmas in high power ion diode performance

Mehlhorn, Thomas A.

We describe measurements, modeling, and mitigation experiments on the effects of anode and cathode plasmas in applied-B ion diodes. We have performed experiments with electrode conditioning and cleaning techniques including RF discharges, anode heating, cryogenic cathode cooling and anode surface coatings that have been successful in mitigating some of the effects of electrode contamination on ion diode performance on both the SABRE and PBFA accelerators. We are developing sophisticated spectroscopic diagnostic techniques that allow us to measure the electric and magnetic fields in the A-K gap, we compare these measured fields with those predicted by our 3-D particle-in-cell (PIC) simulations of ion diodes, and we measure anode and cathode plasma densities and expansion velocities. We are continuing to develop E-M simulation codes with fluid-PIC hybrid models for dense plasmas, in order to understand the role of electrode plasmas in ion diode performance. Our strategy for improving high power ion diode performance is to employ and expand our capabilities in measuring and modeling A-K gap plasmas and leverage our increased knowledge into an increase in total ion beam brightness to High Yield Facility (HYF) levels.

More Details

Pulsed power systems for commercial treatment of materials using short pulse, intense ion beams

Schneider, Larry X.

The high peak power, single-pulse technology developed for government programs during the mid-60`s through the mid-80`s is being adapted for use in continuously operating, high average power commercial materials processing applications. A new thermal surface treatment technology, called ion beam surface treatment (BEST), uses repetitive high energy (kJ`s per pulse), pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1-20 micrometers of the surface of any material. A high average power IBEST processing system is made up of a magnetic pulse compressor (MPC) a magnetically confined anode plasma (MAP) ion beam source, an ion beam transport system, a materials handling system and various cooling and reset systems. System issues such as cost, reliability, size, maintainability, and design-for-manufacturability that were of secondary importance behind specific performance requirements for the earlier government applications are now the primary issues in proposed industrial systems. Research systems are now obtaining lifetime, reliability, and design-rules information for high average power short-pulse components. Beam sources are being developed that are suitable for industrial systems operating at 5-100 kW, 0.1-2.0 MeV, and {le}500 ns pulse widths. Capitol equipment costs, operating and financing costs, and sizing issues are being weighed against specific economic benefits obtained in short-pulse ion beam treatment of selected products. Dependable equipment designers and suppliers, facility integrator, and servicing organizations are being combined with development teams from end-user companies for final technology integration into major manufacturing facilities. An BEST prototype commercial system is being designed and fabricated by QM Technologies for initial operation in mid-1997.

More Details

Geology of the Molina Member of the Wasatch Formation, Piceance Basin, Colorado

Lorenz, John C.

The Molina Member of the Wasatch Formation has been cored in order to assess the presence/absence and character of microbial communities in the deep subsurface. Geological study of the Molina Member was undertaken in support of the microbiological tasks of this project, for the purposes of characterizing the host strata and of assessing the potential for post-depositional introduction of microbes into the strata. The Molina Member comprises a sandy fluvial unit within a formation dominated by mudstones. Sandy to conglomeratic deposits of braided and meandering fluvial systems are present on the western and eastern margins of the basin respectively, although the physical and temporal equivalence of these systems cannot be proven. Distal braided facies of planar-horizontal bedded sandstones are recognized on the western margin of the basin. Natural fractures are present in all Molina sandstones, commonly as apparent shear pairs. Core from the 1-M-18 well contains natural fractures similar to those found in outcrops, and has sedimentological affinities to the meandering systems of the eastern margin of the basin. The hydrologic framework of the Molina, and thus any potential post-depositional introduction of microbes into the formation, should have been controlled by approximately east-west flow through the natural fracture system, the geometries and extent of the sandstones in which the fractures occur, and hydraulic gradient. Migration to the well site, from outcropping recharge areas at the edge of the basin, could have started as early as 40 million years ago if the cored strata are connected to the eastern sedimentary system.

More Details

Evolving perceptions of security - US National Security surveys 1993--1995. Progress report, September 30, 1995--November 14, 1995

Herron, K.G.; Jenkins-Smith, H.C.

This study analyzes findings from a national survey of 2,490 randomly selected members of the US public conducted between September 30 and November 14, 1995. It provides an over time comparison of public perceptions about nuclear weapons risks and benefits and key nuclear policy issues between 1993 and 1995. Other areas of investigation include policy preferences regarding nuclear proliferation, terrorism, US/Russian nuclear cooperation, and personal security. Public perceptions of post-cold war security were found to be evolving in unexpected ways. The perceived threat of nuclear conflict involving the US had not declined, and the threat of nuclear conflict between other countries and fears of nuclear proliferation and terrorism had increased. Perceived risks associated with managing the US nuclear arsenal were also higher. Perceptions of external and domestic benefits from US nuclear weapons were not declining. Support was found for increasing funding for nuclear weapons safety, training, and maintenance, but most respondents favored decreasing funding for developing and testing new nuclear weapons. Strong support was evident for programs and funding to prevent nuclear proliferation and terrorism. Though skeptical that nuclear weapons can be eliminated, most respondents supported reducing the US nuclear arsenal, banning nuclear test explosions, and ending production of fissile materials to make nuclear weapons. Statistically significant relationships were found between perceptions of nuclear weapons risks and benefits and policy and spending preferences. Demographic variables and basic social and political beliefs were systematically related both to risk and benefit perceptions and policy and spending options.

More Details

An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992. Revision

Rechard, Robert P.

This document provides an overview of the processes used to access the performance of the Waste Isolation Pilot Plant (WIPP). The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, HIgh-LEvel and transuranic radioactive Wastes (40 CFR 191).

More Details

Bench-scale experimental determination of the thermal diffusivity of crushed tuff

Ryder, Eric E.

A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

More Details

The characterization and risk assessment of the `Red Forest` radioactive waste burial site at Chernobyl Nuclear Power Plant

Waters, Robert D.

The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via ground water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.

More Details

Measurement techniques for evaluating encapsulant thermophysical properties during cure

Adolf, Douglas B.

Sandia now has the capability to evaluate stresses during cure of epoxies with finite element codes. Numerous material parameters are needed as input to these codes. I present a relatively quick set of tests which enable evaluation of the required thermophysical properties. Ease and accuracy of the tests improve as the reaction rate of the thermoset slows. Material parameters for common encapsulants at Sandia are presented in tables.

More Details

Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

Eldred, Michael S.

An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

More Details

Reliable software systems via chains of object models with provably correct behavior

Yakhnis, A.

This work addresses specification and design of reliable safety-critical systems, such as nuclear reactor control systems. Reliability concerns are addressed in complimentary fashion by different fields. Reliability engineers build software reliability models, etc. Safety engineers focus on prevention of potential harmful effects of systems on environment. Software/hardware correctness engineers focus on production of reliable systems on the basis of mathematical proofs. The authors think that correctness may be a crucial guiding issue in the development of reliable safety-critical systems. However, purely formal approaches are not adequate for the task, because they neglect the connection with the informal customer requirements. They alleviate that as follows. First, on the basis of the requirements, they build a model of the system interactions with the environment, where the system is viewed as a black box. They will provide foundations for automated tools which will (a) demonstrate to the customer that all of the scenarios of system behavior are presented in the model, (b) uncover scenarios not present in the requirements, and (c) uncover inconsistent scenarios. The developers will work with the customer until the black box model will not possess scenarios (b) and (c) above. Second, the authors will build a chain of several increasingly detailed models, where the first model is the black box model and the last model serves to automatically generated proved executable code. The behavior of each model will be proved to conform to the behavior of the previous one. They build each model as a cluster of interactive concurrent objects, thus they allow both top-down and bottom-up development.

More Details

Arc View/Avenue: Coding styles and utility scripts for efficient development

Ganter, John H.

Effectiveness and efficiency of software development can be greatly increased by writing modularized code using informal (styles) and formal (standards) work approaches. Software development is about connecting pieces into a coherent whole. Thus consistent work approaches provide a structure that allows individuals and teams to minimize the time and thought put into making these connections. These investments in structure return even more benefits in the maintenance phase when old code has to be examined by new programmers, or after time has passed. We present some examples of coding style for Avenue: a simplified form of Hungarian notation (notationHungarian, stringCustomerName, etc.), script naming prefixes and suffixes, and options in script headers. We demonstrate several modular, object-like utility scripts that can be used alone or combined into other utilities. These include developer tools such as a System.Echo substitute for Windows, a Window inspector, and a script for detecting and dealing with multiple display resolutions.

More Details

In situ growth rate measurements by normal-incidence reflectance during MOVPE growth

Hou, H.Q.; Breiland, W.G.; Hammons, B.E.; Chui, H.C.

We present an in situ technique for monitoring metal-organic vapor phase epitaxy growth by normal-incidence reflectance. This technique is used to calibrate the growth rate periodically and to monitor the growth process routinely. It is not only a precise tool to measure the growth rate, but also very useful in identifying unusal problems during a growth run, such as depletion of source material, deterioration of surface morphology, and problems associated with an improper growht procedure. We will also present an excellent reproducibility ({+-}0.3% over a course of more than 100 runs) of the cavity wavelength of vertical-cavity surface emitting laser structures with periodic calibration by this in situ technique.

More Details

Electromagnetic effects on transportation systems

Morris, M.E.; Dinallo, M.A.

Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

More Details

Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility

Conway, R.

How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems.

More Details

Isothermal aging of three polyurethane elastomers

Guess, Tommy R.

Two polyurethane systems, EN-7 and L-100, have a long history as encapsulants and coatings in Sandia programs. These materials contain significant amounts of toluene diisocyanate (TDI), a suspect human carcinogen. As part of efforts to reduce the use of hazardous materials in the workplace, PET-90A, a polyurethane with less than 0.1% free TDI, was identified as a candidate for new applications and as a replacement for the more hazardous polyurethanes in selected programs. This report documents the results of a two-year accelerated aging study of PET-90A, EN-7, and L-100 polyurethane elastomers to characterize the effect of 135{degrees}F isothermal aging on selected physical, electrical, mechanical and thermal properties. In general, there was very little change in properties over the two year period for the three elastomers. The largest changes occurred in EN-7, which is the polyurethane with the longest service history in Sandia applications.

More Details

Vector network analyzer check standards measurements and database software

Duda, L.E.

Vector network analyzers provide a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes, require a high degree of user knowledge and expertise. Measurement calibration or error correction must be done prior to use. There are many ways to make poor measurement or measurement. Check standards have been used to verify that the network analyzer is operating properly. A computer program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the check standard device. The program can acquire new measurement data from selected check standards, plot the new data against the mean and standard deviation of prior data for the check standard, and update the database files for the check standard. This paper describes the function of the software including a discussion of its capabilities. The way in which the software is used in our lab is also described. Finally, examples are given of how the software can detect potential measurement problems.

More Details

Combustion of Bulk 84% Fe/16% KCIO{sub 4} heat powder

Guidotti, Ronald A.

Fe/KClO{sub 4} pyrotechnic mixtures are used in thermal batteries to provide the heat necessary to bring the battery stack to operating temperatures of 550 to 600 C. This heat source is normally used as discs pressed from bulk powder. To evaluate the consequences associated with unexpected ignition of large amounts of heat powder, combustion of 84% Fe/16% KClO{sub 4} heat powders was conducted for various scenarios under controlled conditions and the response documented. Increasing amounts of heat powder--up to 8 lbs--were ignited in both unconfined and confined (sealed) containers in a remote area. The containers were thermocoupled and the resulting burning filmed with a standard video camera, high-speed (1,000 frames/s) film and video cameras, and an infrared video camera. A 20- minute video of the burning under the various conditions is presented.

More Details

Integrated Safety, Environmental, & Emergency Management Systems (ISEEMS)

Silver, R.

Sandia`s Risk Management and NEPA Department recognized the need for hazard and environmental data analysis and management to support the line managers` need to know, understand, manage and document the hazards inherent in their facilities and activities. ISEEMS (Integrated Safety, Environmental, & Emergency Management System) was developed in response to this need. ISEEMS takes advantage of the fact that there is some information needed for the NEPA process that is also needed for the safety documentation process. The ISEEMS process enables Sandia to identify and manage hazards and environmental concerns at a level of effort commensurate with the hazards themselves by adopting a necessary and sufficient (graded) approach to compliance. The Preliminary Hazard Screening module of ISEEMS determines the facility or project activity hazard classification and facility designation. ISEEMS` geo-referenced icon allows immediate, visual integration of hazard information across geographic boundaries resulting in significant information compression. At Sandia, ISEEMS runs on the Sandia Internal Restricted Network, in an MS-Windows environment on standard PC hardware. The possibility of transporting ISEEMS to a ``WEB-like`` environment is being explored.

More Details
Results 92501–92600 of 96,771
Results 92501–92600 of 96,771