Publications
Search results
Jump to search filtersCharacterization of E-glass/polyester woven fabric composite laminates and tubes
This report describes an experimental study that supported the LDRD program ``A General Approach for Analyzing Composite Structures``. The LDRD was a tightly coupled analytical / experimental effort to develop models for predicting post-yield progressive failure in E-glass fabric/polyester composites subjected to a variety of loading conditions. Elastic properties, fracture toughness parameters, and failure responses were measured on flat laminates, rings and tubes to support the development and validation of material and structural models. Test procedures and results are presented for laminates tested in tension, compression, flexure, short beam shear, double cantilever beam Mode I fracture toughness, and end notched flexure Mode II fracture toughness. Structural responses, including failure, of rings loaded in diametral compression and tubes tested in axial compression, are also documented.
Modeling of a sinusoidal lobed injector: Vorticity and concentration fields for a cold flow
In this report, we present a simple and somewhat preliminary numerical model of a sinusoidal lobed injector. The lobed (corrugated) injector is being considered by several investigators as a potentially efficient device to mix fuel and air for combustion purposes. In this configuration, air flows parallel to the troughs and valleys of corrugations which grow in amplitude in the stream-wise direction. These ramped corrugations produce stream-wise vortices which enhance the downstream mixing. For the lobed injector, the corrugations are actually double walled which allows one to inject fuel through the space between them into the flow downstream of the ramp. The simulation model presented herein is based on a vorticity formulation of the Navier-Stokes equations and is solved using an unsteady viscous vortex method. In order to demonstrate the utility of this method we have simulated the three-dimensional cold mixing process for injection of methane gas into air. The vorticity and fuel concentration field downstream of the injector are simulated for two different injector geometries. We observe from these two simulations that variation of the amplitude of the corrugations can be used to achieve considerably different mixing patterns downstream of the injector.
Gas intrusion into SPR caverns
The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.
Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)
Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; Mcmaster, M.; Fox, C.; Staley, D.
Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.
A fast and Robust Algorithm for general inequality/equality constrained minimum time problems
Briessen, B.; Sadegh, N.
This paper presents a new algorithm for solving general inequality/equality constrained minimum time problems. The algorithm`s solution time is linear in the number of Runge-Kutta steps and the number of parameters used to discretize the control input history. The method is being applied to a three link redundant robotic arm with torque bounds, joint angle bounds, and a specified tip path. It solves case after case within a graphical user interface in which the user chooses the initial joint angles and the tip path with a mouse. Solve times are from 30 to 120 seconds on a Hewlett Packard workstation. A zero torque history is always used in the initial guess, and the algorithm has never crashed, indicating its robustness. The algorithm solves for a feasible solution for large trajectory execution time t{sub f} and then reduces t{sub f} and then reduces t{sub f} by a small amount and re-solves. The fixed time re- solve uses a new method of finding a near-minimum-2-norm solution to a set of linear equations and inequalities that achieves quadratic convegence to a feasible solution of the full nonlinear problem.
A successful effort to involve stakeholders in the selection of a site for a corrective action management unit
Conway, R.
As part of the effort to clean up hazardous waste sites, Sandia National Laboratories in New Mexico (SNL/NM) adopted a novel approach to involving stakeholders in a key decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), an area designed to consolidate, store, and treat wastes generated from cleanup activities. The decision-making approach was a variation of a technique known as multiattribute utility analysis (MUA). Although MUA has rarely been undertaken during normal Project activities, it proved to be a surprisingly effective means for involving stakeholders in the decision process, generating consensus over a selected site, and enhancing public trust and understanding of Project activities. Requirements and criteria for selecting CAMU sites are provided by the Environmental Protection Agency`s (EPA`s) CAMU Final Rule (EPA 1993). Recognizing the lack of experience with the Rule and the importance of community understanding and support, the ER Project sought an approach that would allow stakeholders to participate in the site-selection process.
Destruction of Trace Organics in Otherwise Ultra Pure Water
A number of experiments were conducted to determine the economic viability of applying various ultraviolet (UV) oxidation processes to a waste water stream containing approximately 12 mg/L total organic carbon (TOC), predominately ethylene glycol. In all experiments, a test solution was illuminated with either near-UV or a far-UV light alone or in combination with a variety of photocatalysts and oxidants. Based upon the outcomes of this project, both UV/photocatalysis and UV/ozone processes are capable of treating the water sample to below detection capabilities of TOC. However, the processes are fairly energy intensive; the most efficient case tested required 11 kWh per order of magnitude reduction in TOC per 1000 L. If energy consumption rates of 5-10 kWh/1000 L are deemed reasonable, then further investigation is recommended.
Integrating end-to-end encryption and authentication technology into broadband networks
BISDN services will involve the integration of high speed data, voice, and video functionality delivered via technology similar to Asynchronous Transfer Mode (ATM) switching and SONET optical transmission systems. Customers of BISDN services may need a variety of data authenticity and privacy assurances, via Asynchronous Transfer Mode (ATM) services Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale for implementation at high speed. The incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. While there are many design issues associated with the serving of public keys for authenticated signaling and for establishment of session cryptovariables, this paper is concerned with the impact of encryption itself on such communications once the signaling and setup have been completed. Network security protections should be carefully matched to the threats against which protection is desired. Even after eliminating unnecessary protections, the remaining customer-required network security protections can impose severe performance penalties. These penalties (further discussed below) usually involve increased communication processing for authentication or encryption, increased error rate, increased communication delay, and decreased reliability/availability. Protection measures involving encryption should be carefully engineered so as to impose the least performance, reliability, and functionality penalties, while achieving the required security protection. To study these trade-offs, a prototype encryptor/decryptor was developed. This effort demonstrated the viability of implementing certain encryption techniques in high speed networks. The research prototype processes ATM cells in a SONET OC-3 payload. This paper describes the functionality, reliability, security, and performance design trade-offs investigated with the prototype.
Sinkhole progression at the Weeks Island, Louisiana, Strategic Petroleum Reserve (SPR) site
Neal, J.T.
A sinkhole measuring 11 m (36 ft) across and 9 m (30 ft) deep was first observed in alluvium overlying the Weeks Island, Louisiana, salt dome in May 1992, but it was about a year old, based on initial surface appearance and subsequent reverse extrapolation of growth rates. A second and much smaller sinkhole was identified in early 1995, nearly three years later. Their position directly over the edges of the SPR oil storage chamber, a former room-and-pillar salt mine, caused apprehension. The association of sinkholes over mines is well established and this occurrence suggested that groundwater influx undoubtedly was causing salt dissolution at shallow depth, and associated collapse of soil at the surface. Leaks of groundwater into other salt mines in Louisiana and elsewhere led to flooding and eventual abandonment (Coates et al., 1981). Consequently, much attention has been and continues to be given to characterizing these sinkholes, and to mitigation. This paper summarizes current engineering geologic concepts, and briefly describes diagnostic and risk mitigation efforts being conducted by the US Department of Energy, operator of the Strategic Petroleum Reserve (Bauer et al., 1994).
New functionalized block copolymers for bonding copper to epoxy
The authors are exploring the use of functionalized block copolymers for bonding copper to epoxy in printed wiring boards. The program involves four key elements: (i) synthesis of suitable functionalized block copolymers; (ii) characterization of the conformation of the copolymers at the relevant interfaces by neutron reflectivity; (iii) spectroscopic measurements of chemical bonding, and (iv) measurement of the mechanical properties of the interfaces. The copolymers are synthesized by living, ring-opening metathesis polymerization. This relatively new technique allows great flexibility for synthesis of functionalized block copolymers in that the initiators are relatively insensitive to a wide range of functional groups. Significant adhesion enhancement has been observed in lap shear tests.
Multidimensional fully-coupled thermal/chemical/mechanical response of reactive materials
A summary of multidimensional modeling is presented which describes coupled thermals chemical and mechanical response of reactive and nonreactive materials. This modeling addresses cookoff of energetic material (EM) prior to the onset of ignition. Cookoff, lasting from seconds to days, sensitizes the EM whereupon combustion of confined, degraded material determines the level of violence. Such processes are dynamic, occurring over time scales of millisecond to microsecond, and thus more amenable for shock physics analysis. This work provides preignition state estimates such as the amount of decomposition, morphological changes, and quasistatic stress states for subsequent dynamic analysis. To demonstrate a fully-coupled thermal/chemical/quasistatic mechanical capability, several example simulations have been performed: (1) the one-dimensional time-to-explosion experiments, (2) the Naval Air Weapon Center`s (NAWC) small scale cookoff bomb, (3) a small hot cell experiment and (4) a rigid, highly porous, closed-cell polyurethane foam. Predictions compared adequately to available data. Deficiencies in the model and future directions are discussed.
Microsystem technology development at Sandia National Laboratories
Smith, J.H.
An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has also been developed for integrating microelectronics with surface micromachined micromechanical devices.
Novel electrolyte additives to enhance zinc electrode cycle life
Doddapaneni, N.
Electrochemical power sources that utilize zinc electrodes possess many advantages. Zinc is abundantly available, benign, inexpensive, stable over a wide operating temperature range, and has a high oxidation potential. In spite of these advantageous characteristics, rechargeable electrochemical systems based on zinc chemistry have not found widespread use. The major disadvantages of zinc electrodes are that they have limited cycle life due to zinc slumping and zinc electrode shape changes in alkaline solutions resulting from the solubility of zincate (Zn(OH){sub 4}{sup 2-}) in these solutions. As a result, premature cell failure often results due to cell shorting caused by dendritic growth as well as zinc slumping. In this paper we describe the chemical and physical characteristics of electrolyte solutions employing additives, particularly for zinc based electrochemical systems. These electrolytes are prepared using the alkali metal salts of 1,3,5-phenyltrisulfonic acid in combination with potassium hydroxide. The alkali metal salts of the acid possess good thermal stability, good ionic conductivity, and have a wide electrochemical voltage window in aqueous systems. With these electrolyte solutions improved cycle life was achieved in Zn/NiOOH and Zn/AgO. Improved cycle life with this additive is attributed to decreased zincate solubility, resulting in reduced zinc slumping and electrode shape changes. In addition, increased shelf-life and reduced self-discharge were also observed in many alkaline power sources.
Shock compression of quartz and aluminum powder mixtures
The authors report about the shock-compression response of highly porous (55% and 65% dense) mixtures of 4Al + 3SiO{sub 2} powders having shock-induced phase transitions and chemical reactions. Shock recovery experiments were performed using the CETR/Sawaoka plate-impact system (P = 40 to 100 GPa) and the Sandia Momma Bear A Comp B fixture (P = 22 to 45 GPa). The recovered compacts contained the high pressure stishovite phase, products of chemical reaction, as well as unreacted constituents. The reaction products formed included Al{sub 2}O{sub 3} metallic Si (ambient and high pressure phases), SiAl intermetallic, and kyanite (Al{sub 2}SiO{sub 5}). The shock-induced chemical reaction in 4Al + 3SiO{sub 2} powder mixtures, appears to have been accompanied (or assisted) by the formation of stishovite, a high pressure phase of quartz.
A study of light point defect removal by SC-1 chemistries
Recent research has shown that dilute SC-1 chemistries, when combined with high frequency sonication (megasonics) can be highly effective for particle removal. The mechanism by which the SC-1 chemistry facilitates particle removal remains unclear. Experiments were performed under extremely dilute conditions in order to help elucidate a cleaning mechanism. Results indicate that hydrogen peroxide, under extremely dilute conditions, is not necessary for effective particle removal. The increase in haze commonly attributed to increased surface roughness is not observed when sufficiently dilute ammonium hydroxide (e.g., 1:2700) is used. The role of hydrogen peroxide, when more concentrated chemistries are used, may be simply to mitigate surface etching and roughening, rather than to play an active role in particle removal.
Rating batteries for initial capacity, charging parameters and cycle life in the photovoltaic application
Stand-alone photovoltaic (PV) systems typically depend on battery storage to supply power to the load when there is cloudy weather or no sun. Reliable operation of the load is often dependent on battery performance. This paper presents test procedures for lead-acid batteries which identify initial battery preparation, battery capacity after preparation, charge regulation set-points, and cycle life based on the operational characteristics of PV systems.
Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology
Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.
Pillowing doublets: Refining a mesh to ensure that faces share at most one edge
Occasionally one may be confronted by a hexahedral or quadrilateral mesh containing doublets, two faces sharing two edges. In this case, no amount of smoothing will produce a mesh with agreeable element quality: in the planar case, one of these two faces will always have an angle of at least 180 degrees between the two edges. The authors describe a robust scheme for refining a hexahedral or quadrilateral mesh to separate such faces, so that any two faces share at most one edge. Note that this also ensures that two hexahedra share at most one face in the three dimensional case. The authors have implemented this algorithm and incorporated it into the CUBIT mesh generation environment developed at Sandia National Laboratories.
The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis
Lober, R.R.; Tautges, T.J.; Cairncross, R.A.
The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the original paving algorithm is highly serial, a two stage approach has been designed to parallelize the algorithm but also retain the nice qualities of the serial algorithm. The authors approach also allows the subdomain decomposition used by the meshing code to be shared with the finite element physics code, eliminating the need for data transfer across the processors between the analysis and remeshing steps. In addition, the meshed subdomains are adjusted with a dynamic load balancer to improve the original decomposition and maintain load efficiency each time the mesh has been regenerated. This initial parallel implementation assumes an approach of restarting the physics problem from time zero at each interaction, with a refined mesh adapting to the previous iterations objective function. The remeshing tools are being developed to enable real time remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for parallel operation is discussed including extensions allowing adaptive control and geometry regeneration.
Scaling behavior in the conductivity of alkali oxide glasses
Sidebottom, D.L.
Although the frequency dependent conductivity, {sigma}({omega}), of ion-containing glasses displays power law dispersion ({sigma}({omega}) {approx} {omega}{sup n}) that can usually be described by a master curve, several findings have suggested that this scaling fails at low temperatures as indicated by a temperature dependence of the scaling exponent, n. The authors investigate this behavior in the frequency range between 1 Hz and 10{sup 6} Hz for a different materials including alkali metaphosphate glasses and a polymer. They identify two distinct regimes of conductive behavior, {sigma}{sub {vert_bar}} and {sigma}{sub {parallel}}. The first, {sigma}{sub {vert_bar}}, is strongly temperature dependent and appears to obey a master curve representation. The second, {sigma}{sub {parallel}}, exhibits only a weak temperature dependence with a roughly linear frequency dependence. A strong depression of {sigma}{sub {vert_bar}} occurs for the mixed alkali case, but {sigma}{sub {parallel}} is unaffected and occurs at roughly the same location in all the alkali compositions studied. They propose that {sigma}{sub {parallel}} does not arise from cation motion, but rather originates from a second mechanisms likely involving small distortions of the underlying glassy matrix. This assignment of {sigma}{sub {parallel}} is further supported by the roughly universal location of {sigma}{sub {parallel}}, to within an order of magnitude, of a variety of materials, including a polymer electrolyte and a doped crystal. Since {sigma}{sub {vert_bar}}(T) and {sigma}{sub {parallel}}(T {approx} const.) are viewed as separate phenomena, the temperature dependence of the scaling exponent is shown to result merely from a superposition of these two contributions and does not indicate any intrinsic failure of the scaling property of {sigma}{sub {vert_bar}}.
Materials and society -- Impacts and responsibilities
Westwood, A.R.C.
The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.
The Web Interface Template System (WITS), a software developer`s tool
The Web Interface Template System (WITS) is a tool for software developers. WITS is a three-tiered, object-oriented system operating in a Client/Server environment. This tool can be used to create software applications that have a Web browser as the user interface and access a Sybase database. Development, modification, and implementation are greatly simplified because the developer can change and test definitions immediately, without writing or compiling any code. This document explains WITS functionality, the system structure and components of WITS, and how to obtain, install, and use the software system.
An assessment of space reactor technology needs and recommendations for development
In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. a systematic approach was used to explore needs at several levels that are increasingly specific. Level 0 -- general trends and issues; Level 1 -- generic space capabilities to address trends; Level 2 -- requirements to support capabilities; Level 3 -- system types capable of meeting requirements; Level 4 --generic reactor system types; and Level 5 -- specific baseline systems. Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper.
Electron induced surface chemistry at the Cs/sapphire interface
Electron induced etching of sapphire in the presence of Cs has been studied using a variety of surface analytical techniques. We find that this process occurs on both the (0001) and (1102) orientations of sapphire. Monolayer amounts of Al and sub-oxides of Al are thermally desorbed from the surface at temperatures as low as 1000 K when the surface is irradiated with electrons in the presence of Cs. Etching is highly dependent on Cs coverage with the (0001) and (1102) surfaces requiring 2.0 {times} 10{sup 14} and 3.4 {times} 10{sup 14} atoms/cm{sup 2} to support etching, respectively. Adsorption profiles demonstrate that these coverages correspond to initial saturation of the surface with Cs. Electron damage of the surface in the absence of Cs also produces desorption of Al and sub-oxides of Al indicating a possible mechanism for etching. The impact of etching on the surface is to increase the adsorption capacity on the (0001) surface while decreasing both initial adsorption probability and capacity on the (1102) surface.
Synthesis of silicon nitride particles in pulsed Rf plasmas
Silicon nitride (hydrogenated) particles are synthesized using a pulsed 13.56 Mhz glow discharge. The plasma is modulated with a square-wave on/off cycle of varying period to study the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar and SiH{sub 4}/NH{sub 3} plasmas, an initial very rapid growth phase is followed by slower growth, approaching the rate of thin film deposition on adjacent flat surfaces. The average particle size can be controlled in the 10-100 nm range by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continuous nucleation during the plasma-on period. The large polydispersity is also reported for silicon particles from silane and differs from that reported in other laboratories. The silicon nitride particle morphology is compared to that of silicon and silicon carbide particles generated by the same technique. Whereas Si particles appear as rough clusters of smaller subunits, the SiC particles are smooth spheres, and the Si{sub 3}N{sub 4} particles are smooth but non-spherical. Post-plasma oxidation kinetics of the particles are studied with FTIR and are consistent with a hydrolysis mechanism proposed in earlier work with continuous plasmas. Heat treatment of the powder in an ammonia atmosphere results in the elimination of hydrogen, rendering the silicon nitride resistant to atmospheric oxidation.
Progress in the Advanced Synthetic-Diamond Drill Bit Program
Glowka, D.A.; Dennis, T.; Le, Phi; Cohen, J.; Chow, J.
Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.
Active fiber optic technologies used as tamper-indicating devices
The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.
Whisker weaving: Invalid connectivity resolution and primal construction algorithm
This paper describes the techniques used to resolve invalid connectivity created as a natural part of the whisker weaving algorithm. These techniques rely on the detection of {open_quotes}repeated hexes{close_quotes} in the STC data, which indicate face pairs which share two edges. The {open_quotes}repeated hex{close_quotes} case is described in detail, including the resolution technique by which a self-intersecting whisker sheet with two independent face loops are created. The algorithm used to construct the primal of an all-hexahedral mesh (i.e. the actual nodes and hex elements) from the connectivity data contained in the STC is also described. The primal is constructed using a {open_quotes}gift-wrapping{close_quotes} algorithm, where all the mesh edges and hexes containing a particular node are found by traversing between hexes already known to share the node. This algorithm is implemented inside the CUBIT code and is used to generate meshes for several example problems.
A first-principles approach to total-dose hardness assurance
A first-principles approach to radiation hardness assurance was described that provides the technical background to the present US and European total-dose radiation hardness assurance test methods for MOS technologies, TM 1019.4 and BS 22900. These test methods could not have been developed otherwise, as their existence depends not on a wealth of empirical comparisons of IC data from ground and space testing, but on a fundamental understanding of MOS defect growth and annealing processes. Rebound testing should become less of a problem for advanced MOS small-signal electronics technologies for systems with total dose requirements below 50--100 krad(SiO{sub 2}) because of trends toward much thinner gate oxides. For older technologies with thicker gate oxides and for power devices, rebound testing is unavoidable without detailed characterization studies to assess the impact of interface traps on devices response in space. The QML approach is promising for future hardened technologies. A sufficient understanding of process effects on radiation hardness has been developed that should be able to reduce testing costs in the future for hardened parts. Finally, it is hoped that the above discussions have demonstrated that the foundation for cost-effective hardness assurance tests is laid with studies of the basic mechanisms of radiation effects. Without a diligent assessment of new radiation effects mechanisms in future technologies, one cannot be assured that the present generation of radiation test standards will continue to apply.
General performance of the SANDUS digitizers
The SANDUS (SANdia Digital Underground System) waveform digitizing system was developed by the instrumentation development division in support of underground nuclear testing and first fielded in the late 70`s. This system has been successfully used for over a decade for the digitization of signals from DC to 10 Mhz. This report is intended to be a broad survey of the fundamental performance characteristics of the system. The data included herein were obtained from a small number of channels under a limited number of configurations and should provide the reader with the general range of performance parameters. As a survey, the laboratory and analytical procedures for the tests have not been detailed.
Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling
This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.
Diesel emissions and ventilation exhaust sampling in the North Ramp of the Yucca Mountain Project Exploratory Studies Facility
A series of ventilation experiments have been performed to assess the potential retention of diesel exhaust constituents in the North Ramp of the Yucca Mountain Site Characterization Project`s Exploratory Studies Facility (ESF). Measurements were taken to help evaluate the potential impact of retained diesel exhaust constituents on future in-situ experiments and long-term waste isolation. Assessment of the diesel exhaust retention in the ESF North Ramp required the measurement of air velocities, meteorological measurements, quantification of exhaust constituents within the ventilation air stream, multiple gas sample collections, and on-line diesel exhaust measurements. In order to assess variability within specific measurements, the experiment was divided into three separate sampling events. Although somewhat variable from event to event, collected data appear to support pre-test assumptions of high retention rates for exhaust constituents within the tunnel. The results also show that complete air exchange in the ESF does not occur within the estimated 16 to 20 minutes derived from the ventilation flowrate measurements. Because the scope of work for these activities covered only measurement and acquisition of data, no judgment is offered by the author as to the implications of this work. Final analyses and decisions based upon the entire compendium of data associated with this investigation is being undertaken by the Repository and ESF Ventilation Design Groups of the Yucca Mountain Site Characterization Project.
A summary of the Fire Testing Program at the German HDR Test Facility
This report provides an overview of the fire safety experiments performed under the sponsorship of the German government in the containment building of the decommissioned pilot nuclear power plant known as HDR. This structure is a highly complex, multi-compartment, multi-level building which has been used as the test bed for a wide range of nuclear power plant operation safety experiments. These experiments have included numerous fire tests. Test fire fuel sources have included gas burners, wood cribs, oil pools, nozzle release oil fires, and cable in cable trays. A wide range of ventilation conditions including full natural ventilation, full forced ventilation, and combined natural and forced ventilation have been evaluated. During most of the tests, the fire products mixed freely with the full containment volume. Macro-scale building circulation patterns which were very sensitive to such factors as ventilation configuration were observed and characterized. Testing also included the evaluation of selective area pressurization schemes as a means of smoke control for emergency access and evacuation stairwells.
Extraction of information from unstructured text
Extracting information from unstructured text has become an emphasis in recent years due to the large amount of text now electronically available. This status report describes the findings and work done by the end of the first year of a two-year LDRD. Requirements of the approach included that it model the information in a domain independent way. This means that it would differ from current systems by not relying on previously built domain knowledge and that it would do more than keyword identification. Three areas that are discussed and expected to contribute to a solution include (1) identifying key entities through document level profiling and preprocessing, (2) identifying relationships between entities through sentence level syntax, and (3) combining the first two with semantic knowledge about the terms.
Lossless compression of instrumentation data. Final report
Stearns, S.D.
This is our final report on Sandia National Laboratories Laboratory- Directed Research and Development (LDRD) project 3517.070. Its purpose has been to investigate lossless compression of digital waveform and image data, particularly the types of instrumentation data generated and processed at Sandia Labs. The three-year project period ran from October 1992 through September 1995. This report begins with a descriptive overview of data compression, with and without loss, followed by a summary of the activities on the Sandia project, including research at several universities and the development of waveform compression software. Persons who participated in the project are also listed. The next part of the report contains a general discussion of the principles of lossless compression. Two basic compression stages, decorrelation and entropy coding, are described and discussed. An example of seismic data compression is included. Finally, there is a bibliography of published research. Taken together, the published papers contain the details of most of the work and accomplishments on the project. This final report is primarily an overview, without the technical details and results found in the publications listed in the bibliography.
CUERVO: A finite element computer program for nonlinear scalar transport problems
CUERVO is a finite element code that is designed for the solution of multi-dimensional field problems described by a general nonlinear, advection-diffusion equation. The code is also applicable to field problems described by diffusion, Poisson or Laplace equations. The finite element formulation and the associated numerical methods used in CUERVO are outlined here; detailed instructions for use of the code are also presented. Example problems are provided to illustrate the use of the code.
Fuel dispersal modeling for aircraft-runway impact scenarios
A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.
A software surety analysis process
As part of the High Consequence System Surety project, this work was undertaken to explore, one approach to conducting a surety theme analysis for a software-driven system. Originally, plans were to develop a theoretical approach to the analysis, and then to validate and refine this process by applying it to the software being developed for the Weight and Leak Check System (WALS), an automated nuclear weapon component handling system. As with the development of the higher level High consequence System surety Process, this work was not completed due to changes in funding levels. This document describes the software analysis process, discusses its application in a software, environment, and outlines next steps that could be taken to further develop and apply the approach to projects.
Diffraction efficiency analysis for multi-level diffractive optical elements
Passive optical components can be broken down into two main groups: Refractive elements and diffractive elements. With recent advances in manufacturing technologies, diffractive optical elements are becoming increasingly more prevalent in optical systems. It is therefore important to be able to understand and model the behavior of these elements. In this report, we present a thorough analysis of a completely general diffractive optical element (DOE). The main goal of the analysis is to understand the diffraction efficiency and power distribution of the various modes affected by the DOE. This is critical to understanding cross talk and power issues when these elements are used in actual systems. As mentioned, the model is based on a completely general scenario for a DOE. This allows the user to specify the details to model a wide variety of diffractive elements. The analysis is implemented straightforwardly in Mathematica. This report includes the development of the analysis, the Mathematica implementation of the model and several examples using the Mathematical analysis tool. It is intended that this tool be a building block for more specialized analyses.
Measurement of dielectric and magnetic properties of soil
The possibility of subsurface imaging using SAR technology has generated a considerable amount of interest in recent years. One requirement for the successful development of a subsurface imagin system is an understanding of how the soil affects the signal. In response to a need for an electromagnetic characterization of the soil properties, the Radar/Antenna department has developed a measurement system which determines the soils complex electric permittivity and magnetic permeability at UHF frequencies. The one way loss in dB is also calculated using the measured values. There are many reports of measurements of the electric properties of soil in the literature. However, most of these are primarily concerned with measuring only a real dielectric constant. Because some soils have ferromagnetic constituents it is desirable to measure both the electric and magnetic properties of the soil.
Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes
The chemical and radiation stability of polyacrylonitrile (PAN) in the form of beads (B-PAN), similar to the beads of composite absorbers, and one selected composite absorber (ammonium molybdophosphate, the active component in PAN binder [AMP-PAN], a prospective candidate for the treatment of acidic wastes) were studied. Aqueous 1M HNO{sub 3} + 1M NaNO{sub 3}, 1M NaOH + 1M NaNO{sub 3}, and 1M NaOH were chosen as simulants of DOE acidic and alkaline wastes. In addition,radiation stability was determined indistilled water. The chemical stability of B-PAN and AMP-PAN beads was tested for a period up to one month of contact with the solution at ambient temperature. The radiation stability of the beads was checked in a radiation dose range 10{sup 3}--10{sup 6} Gy (10{sup 5}--10{sup 8} rads). In acidic solutions the stability of PAN binder was proved not to be limited by either chemical or radiation decomposition. PAN binder may thus be used for preparing composite absorbers for treatment of acid wastes from DOE facilities. The same conclusion is valid for alkaline solutions with pH up to 13. In highly alkaline solutions (concentration of NAOH higher than I M) and in the presence of NaNO{sub 3}, the stability of the tested polyacrylonitrile polymer was sufficient for applications not extending over 10 days. Cross-linking of the polymer caused by ionizing radiation was found to have a positive influence on chemical stability. This effect enables a longer period of applicability of PAN-based composite absorbers. Because of the high sorption rate achievable with PAN-based absorbers, the stability achieved is sufficient for most applications in the DOE complex. The chemical stability of binding polymer may also be further improved by testing another, more suitable type of polymer from the broad family of polyacrylonitrile polymers.
Dynamics of nucleation in chemical vapor deposition
We study the evolution of layer morphology during the early stages of metal chemical vapor deposition (CVD) onto Si(100) via pyrolysis of Fe(CO){sub 5} below 250{degrees}C. Scanning tunneling microscopy (STM) shows that nuclei formation is limited by precursor dissociation which occurs on terraces, not at step sites. Also, the average size of clusters formed during CVD is larger than for Fe growth by evaporation (a random deposition process). Based on STM data and Monte Carlo simulations, we conclude that the CVD-growth morphology is affected by preferential dissociation of Fe(CO){sub 5} molecules at existing Fe clusters -- an autocatalytic effect. We demonstrate that nucleation kinetics can be used to control formation of metal nanostructures on chemically tailored surfaces. Reactive sites on Si (001) are first passivated by hydrogen. H atoms are locally removed by electron stimulated desorption using electrons emitted from the STM tip. Subsequent pyrolysis of Fe(CO){sub 5} leads to selective nucleation and growth of Fe films in the areas where H has been removed.
Users` manual for LEHGC: A Lagrangian-Eulerian Finite-Element Model of Hydrogeochemical Transport Through Saturated-Unsaturated Media. Version 1.1
The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N{sup 2} as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids.
A long pulse high-power diode based on a microelectronic emitter
Microelectronic cathode emitter technology being developed at Sandia for supplying continuous low current for flat panel displays appears to be a promising technology for providing high currents when operated in a pulsed, higher voltage mode. If currents in excess of one amp per square centimeter could be produced for tens of microseconds at several kilohertz repetition rate, important applications in such as large volume food or waste sterilization in situ detection, and high power microwave production could be achieved. A testbed was built to perform the experiments. The desired current densities have been demonstrated using small emitter arrays.
The use of synthetic hydrocalcite as a chloride-ion getter for a barrier aluminum anodization process
Panitz, J.K.G.; Sharp, D.J.
Chloride ion contamination at parts per billion concentrations plaques electrochemists studying barrier anodic aluminum oxide film growth and anodic aluminum oxide capacitor manufacturers. Chloride ion contamination slows film growth and reduces film quality. We have demonstrated that synthetic hydrocalcite substantially reduces the detrimental effects of chloride ion contamination in an aqueous electrolyte commonly used to grow barrier anodic aluminum oxide. We have determined that problems arise if precautions are not taken when using synthetic hydrocalcite as a chloride-ion getter in an aqueous electrolyte. Synthetic hydrocalcite is somewhat hydrophobic. If this powder is added directly to an aqueous electrolyte, some powder disperses; some floats to the top of the bath and forms scum that locally impedes anodic film formation. Commercially available powder contains a wide range of particle sizes including submicrometer-sized particles that can escape through filters into the electrolyte and cause processing problems. These problems can be over come if (1) the getter is placed in filter bags, (2) a piece of filter paper is used to skim trace amounts of getter floating on the top of the bath, (3) dummy runs are performed to scavenge chloride-ion loaded getter micelles dispersed in the bath, and (4) substrates are rinsed with a strong stream of deionized water to remove trace amounts of powder after anodization.
Superior Valley photovoltaic power processing and system controller evaluation
Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.
Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993
This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included.
Inverse-synthetic-aperture imaging of trees over a ground plane
Recent data collections with the Sandia VHF-UHF synthetic-aperture radar have yielded surprising results; trees appear brighter in the images than expected! In an effort to understand this phenomenon, various small trees have been measured on the Sandia folded compact range with the inverse-synthetic-aperture imaging system. A compilation of these measurements is contained in this report.
Teamwork and diversity: A survey at Sandia National Laboratories
Apodaca, T.; Berman, M.; Griego, C.; Jansma, R.; Leatherwood, M.; Lovato, L.; Sanchez, A.
In September, 1994, Sandia`s Diversity Leadership and Education Outreach Center arid the Corporate Diversity Team commissioned a Diversity Action Team (DAT-Phase II) to address the area of team- work. The goal of this DAT was to identify ways to capitalize on the diversity of people to enhance team success at Sandia. Given a six- month lifetime and funding levels of 12 hours per person per month, we chose to accomplish our goal by gathering and analyzing data on the performance and diversity of Sandia teams and publishing this report of our findings. The work presented herein builds on earlier work of this team.
Case studies of sealing methods and materials used in the salt and potash mining industries
Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs.
Evaluation of geotechnical monitoring data from the ESF North Ramp Starter Tunnel, April 1994 to June 1995. Revision 1
This report presents the results of instrumentation measurements and observations made during construction of the North Ramp Starter Tunnel (NRST) of the Exploratory Studies Facility (ESF). The information in this report was developed as part of the Design Verification Study, Section 8.3.1.15.1.8 of the Yucca Mountain Site Characterization Plan (DOE 1988). The ESF is being constructed by the US Department of Energy (DOE) to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. The Design Verification Studies are performed to collect information during construction of the ESF that will be useful for design and construction of the potential repository. Four experiments make up the Design Verification Study: Evaluation of Mining Methods, Monitoring Drift Stability, Monitoring of Ground Support Systems, and The Air Quality and Ventilation Experiment. This report describes Sandia National Laboratories` (SNL) efforts in the first three of these experiments in the NRST.
International photovoltaic products and manufacturers directory, 1995
Shepperd, L.W.
This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.
Test results, Industrial Solar Technology parabolic trough solar collector
Dudley, V.E.
Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.
Solar kinetics` photovoltaic concentrator module and tracker development
Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/sq m and an extrapolated cell temperature of 25 C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.
R and D Evaluation Workshop report, U.S. Department of Energy, Office of Energy Research, September 7--8, 1995
The objective of the workshop was to promote discussions between experts and research managers on developing approaches for assessing the impact of DOE`s basic energy research upon the energy mission, applied research, technology transfer, the economy, and society. The purpose of this impact assessment is to demonstrate results and improve ER research programs in this era when basic research is expected to meet changing national economic and social goals. The questions addressed were: (1) By what criteria and metrics does Energy Research measure performance and evaluate its impact on the DOE mission and society while maintaining an environment that fosters basic research? (2) What combination of evaluation methods best applies to assessing the performance and impact of OBES basic research? The focus will be upon the following methods: Case studies, User surveys, Citation analysis, TRACES approach, Return on DOE investment (ROI)/Econometrics, and Expert panels. (3) What combination of methods and specific rules of thumb can be applied to capture impacts along the spectrum from basic research to products and societal impacts?
Barrier/Cu contact resistivity
The specific contact resistivity of Cu with ({alpha} + {beta})-Ta, TiN, {alpha}-W, and amorphous-Ta{sub 36}Si{sub 14}N{sub 50} barrier films is measured using a novel four-point-probe approach. Geometrically, the test structures consist of colinear sets of W-plugs to act as current and voltage probes that contact the bottom of a planar Cu/barrier/Cu stack. Underlying Al interconnects link the plugs to the current source and voltmeter. The center-to-center distance of the probes ranges from 3 to 200 {micro}m. Using a relation developed by Vu et al., a contact resistivity of roughly 7 {times} 10{sup {minus}9} {Omega} cm{sup 2} is obtained for all tested barrier/Cu combinations. By reflective-mode small-angle X-ray scattering, the similarity in contact resistivity among the barrier films may be related to interfacial impurities absorbed from the deposition process.
The effect of grain shape on strength variability of alumina ceramics
Readey, M.J.
Fine-grained and coarse-grained aluminas containing either equiaxed or elongated grain structures were fabricated from commercial-purity and high-purity alumina powders. Compared to the high-purity aluminas, the commercial-purity aluminas having a coarse grain size and elongated grain structures exhibited significantly more pronounced flaw tolerance and T-curve behavior. T-curve behavior determined from indentation strength tests suggested that only the coarse- grained, elongated-grain alumina had a T-curve sufficient to cause stable crack extension prior to failure, a requirement for any observable improvement in reliability. In the high-purity aluminas as well as the fine-grained commercial-purity aluminas, however, it is likely that little or no stable extension occurs prior failure, suggesting that strength in these materials is dependent on the critical flaw size. Strength tests on polished specimens showed the commercial-purity aluminas had a lower means strength than the high- purity aluminas and the coarse-grained aluminas exhibited a lower mean strength compared to the fine-grained aluminas. An analysis of the mean strength versus grain size revealed that the differences in critical flaw size alone could not account for the differences in mean strength. Instead, a combination of changes in flaw size as well as T-curve behavior were shown to be responsible for the differences in strength and flaw tolerance. T-curve behavior was also found to have a profound influence on the strength variability of alumina. For example, the Weibull modulus for the coarse-grained, commercial- purity alumina was almost twice that of the fine-grained, high-purity material. Tests with indented specimens conclusively demonstrated that improvements in reliability in these materials are not due solely to changes in the critical flaw size distribution but rather a combination of flaw size distribution and T-curve behavior.
Characterization of a resonant plate shock system using finite element analysis
The dynamic performance of a 250 Hz resonant plate shock system which simulates pyrotechnic shock environments on micro-electrical components is evaluated. A series of experiments recording strain rate histories and acceleration time histories at several plate locations were conducted. This empirical data is used to compare the analytical results obtained from a finite element based numerical simulation. The comparison revealed a good correlation between experimental and analytical results.
Preliminary analysis of NAPL behavior in soil-heated vapor extraction for in-situ environmental restoration
Simulations of soil-heated vapor extraction have been performed to evaluate the NAPL removal performance as a function of borehole vacuum. The possibility of loss of NAPL containment, or NAPL migration into the unheated soil, is also evaluated in the simulations. A practical warning sign indicating migration of NAPL into the unheated zone is discussed.
Hydrogen incorporation into III-V nitrides during processing
Hydrogen is readily incorporated into GaN and related alloys during wet and dry etching, chemical vapor deposition of dielectric overlayers, boiling in water and other process steps, in addition to its effects during MOCVD or MOMBE growth. The hydrogen is bound at defects or impurities and passivates their electrical activity. Reactivation occurs at 450-550{degrees}C, but evolution from the crystal requires much higher temperatures ({ge} 800{degrees}C).
Synthesis and characterization of Fe colloid catalysts in inverse micelle solutions
We have studied the formation of Fe clusters in inverse micelles. We have characterized the clusters with respect to size with transmission electron microscopy (TEM) and with respect to chemical composition with Mossbauer spectroscopy, electron diffraction, and x-ray photoelectron spectroscopy (XPS). In addition, we have tested these iron based clusters for catalytic activity in a model hydrogenolysis reaction. The formation of ultra-small metal particles is of particular interest in the area of chemical catalysis. The clusters are high surface area, highly dispersed, unsupported materials. In addition, catalytic enhancement due to unique material properties (i.e. quantum size effects) is possible. Metal clusters prepared by a number of techniques have been studied as potential catalysts. Reactant adsorption and the reactivity in various processes depends strongly on particle size. We are studying iron clusters as potential catalysts in hydrogenation reactions, Fischer-Tropsch synthesis, and coal liquefaction.
Rietveld refinement of YBa{sub 2}Cu{sub 3-x}Ni{sub x}O{sub y} prepared by quenching and oxygen gettering
We have refined the structures for YBa{sub 2}Cu{sub 2.94}Ni{sub 0.06}O{sub y} (2% Ni) and YBa{sub 2}Cu{sub 2.80}Ni{sub 0.20}O{sub y} (6.67% Ni) at y {approximately} 6.95 and y {approximately} 6.5 contents. Oxygen was reduced by two independent methods: quenching from 690{degrees}C and oxygen gettering at 450{degrees}C. Cu-0 bond lengths were calculated based on Rietveld structure refinements for the various samples; they indicate the likely occupancy of Ni in the plane (Cu2) site of the 123 superconductor.
Photo- and cathodoluminescence of hydrothermally synthesized Y{sub 3}Al{sub 5}O{sub 12}:Tb and NaY(WO{sub 4}){sub 2}:Tb
Cathodoluminescent (CL) phosphors with improved low-voltage characteristics are needed for use in emissive flat panel displays. Conventional high-temperature methods for phosphor synthesis yield large polycrystalline grains that must be pulverized prior to screen deposition. Grinding has been implicated in reducing phosphor efficiency by causing surface contamination and defects. Hydrothermal synthesis has been used to improve the quality of ceramic powders by producing fine, well-formed crystallites without grinding. Two green-emitting phosphors, Y{sub 3}Al{sub 5}O{sub 12}:Tb (YAG:Tb) and NaY(WO{sub 4}){sub 2}:Tb, were used to test the effects of hydrothermal. synthesis on grain size and morphology, and on low-voltage CL properties. YAG:Th prepared hydrothermally consisted of submicron crystallites with a typical garnet habit. The CL efficiency of hydrothermally synthesized YAG:Tb (3 lm/W at 800 V) was comparable to that of equivalent YAG:Tb compositions prepared via high-temperature solid state reaction. In comparison, CL intensities of Gd{sub 3}Ga{sub 5}O{sub l2}:Tb were slightly better (3.5 lm/W at 800 V), while those of NaY(WO{sub 4}){sub 2}:Tb were approximately 1/100th that of YAG:Tb. Both CL and photoluminescence data show that the difference in the cathodoluminescence of YAG and NaY(WO{sub 4}){sub 2} can be understood in terms of differences in the mechanism of activation.
ECR etching of group-III nitride binary and ternary films
Due to their wide band gaps and high dielectric constants, the group III-nitrides have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs) and for their potential use in laser structures and high temperature electronics. Processing of these materials, in particular wet and dry etching, has proven to be extremely difficult due to their inert chemical nature. We report electron cyclotron resonance (ECR) etch rates for GaN, InN, AlN, In{sub (x)}Ga{sub (1-x)}Ni and In{sub (x)}Al{sub (1-x)}N as a function of temperature, rf-power, pressure, and microwave power. Etch conditions are characterized for rate, profile, and sidewall and surface morphology. Atomic force microscopy (AFM) is used to quantify RMS roughness of the etched surfaces. We observe consistent trends for the InAlN films where the etch rates increase with increasing concentration of In. The trends are far less consistent for the InGaN with a general decrease in etch rate as the In concentration is increased.
Physical protection implementation in the Former Soviet Union
Short communication.
Proximal potentially seismogenic sources for Sandia National Laboratories, Albuquerque, New Mexico
Gibson, J.D.
Recent geologic and geophysical investigations within the Albuquerque Basin have shed light on the potentially seismogenic sources that might affect Sandia National Laboratories, New Mexico (SNL/NM), a multi-disciplinary research and engineering facility of the US Department of Energy (DOE). This paper presents a summary of potentially seismogenic sources for SNL/NM, emphasizing those sources within approximately 8 kilometers (km) of the site. Several significant faults of the central Rio Grande rift transect SNL/NM. Although progress has been made on understanding the geometry and interactions of these faults, little is known of the timing of most recent movement or on recurrent intervals for these faults. Therefore, whether particular faults or fault sections have been active during the Holocene or even the late Pleistocene is undocumented. Although the overall subdued surface expression of many of these faults suggests that they have low to moderate slip rates, the proximity of these faults to critical (e.g., nuclear) and non-critical (e.g., high-occupancy, multistory office/light lab) facilities at SNL/NM requires their careful examination for evaluation of potential seismic hazard.
Developing and testing technologies for future remote monitoring systems
Johnson, C.S.; Dupree, S.A.
Remote monitoring systems presently operating in facilities in a number of countries around the world are providing valuable information on the installation and operation of such systems. Results indicate they are performing reliably. While the technology for remote monitoring exists today, it may be some time before numerous constraints on implementation can be resolved. However, the constraints should not prevent the designing of systems that can be used for remote monitoring. Selection of the proper technology path for future development should include a flexible approach to front-end detection, data formats, data processing, and other areas. A brief description of two of the existing remote monitoring systems, and some general recommendations for future remote monitoring systems, will be presented.
Implementation of safeguards and security for fissile materials disposition reactor alternative facilities
A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material.
The PAMTRAK system and its operational issues
A system has been developed by Sandia National Laboratories (SNL) as part of the joint laboratory project with Los Alamos National Laboratory and Argonne National Laboratory-West (ANL-W). The objective is to provide support for Safeguards and Security and Nuclear Materials Control and Accountability within the DOE complex. Since its original design PAMTRAK has been enhanced to include material monitoring, personnel monitoring, and video surveillance. Material monitoring is provided by the WATCH (Wireless Alarm Transmission of Container Handling) subsystem by performing continuous surveillance via constantly monitored Tamper Indicating Devices of all material not directly involved in the fuel manufacturing process. Personnel tracking uses radio frequency and infrared sensors to detect unauthorized access to restricted areas and to enforce constant monitoring of containers or other objects within a ``region of interest`` in a storage vault or other restricted area. Advantages of combining these sensor subsystems include reducing personnel radiation exposure by extending the time between required physical inventory intervals as well as adding robustness to existing security measures. PAMTRAK is being demonstrated as part of the integrated materials monitoring and accounting system in the Fuels and Manufacturing Facility (FMF) located at ANL-W. This paper will describe the technologies employed for installation of the system by SNL, as well as the operational issues involved in using the system at ANL-W.
Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant
Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.
Power as a function of reliability
Many studies employ multiple measurement instruments such as human raters, observers, judges, or mechanical gauges to record subject data. It is well known that the consistency of these instruments, commonly called rater reliability, limits the extent to which conclusions should be drawn from the observed data. However, the degree to which rater reliability limits conclusions has traditionally been assessed in only subjective manners. In this paper, a method is developed for objectively quantifying the impact of rate reliability on the statistical analysis of data from a commonly used collection scheme. This method allows the inclusion of a reliability index in statistical power calculations and is an invaluable tool in the planning of experiments.
Applying the Laboratory Integration and Prioritization System (LIPS) to decision-making at Sandia National Laboratories
The Laboratories Services Division of Sandia National Laboratories includes a wide variety of operations such as environmental, safety and health, safeguards and security, facilities, logistics, and sites planning and integration. In the face of declining budgets and increasing requirements, the Management Team needed some tools to assist in negotiating with customers and regulators and in consistently and cost-effectively managing all work performed and/or managed by the Division. The Integrated Services Management System (ISMS) was developed as a series of processes to provide these tools. The Laboratory Integration and Prioritization System (LIPS) was selected as the prioritization methodology for ISMS. The pilot application phase was begun in February 1994 and addressed planning of work and resources for FY95. Extensive training was provided for the Activity Data Sheet (ADS) preparers and the teams which would score each of the activities. After preparation of the ADSs, they were scored by the scoring teams. A division-wide review board reviewed all of the ADSs to ensure consistency of scoring across all of the functional areas. The lessons that were learned from the pilot application were evaluated and improvements incorporated for the FY96 planning and application. The improvements included upgrading the training, providing expert facilitation for scoring boards, modification of the scoring instructions to better represent local situations, and establishing an Validation Board with more authority and accountability to provide quality assurance. The participants in the LIPS process have agreed that no major bases were uncovered, imperfect prioritizations are better than no data, all work packages can be scored and ranked, including core activities, results were objective and quantifiable, and decisions could be made using technically defensible bases.
Scalable end-to-end ATM encryption test results
Customers of Asynchronous Transfer Mode (ATM) services may need a variety of data authenticity and privacy assurances. Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale for implementation at high speed. The incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. To study these trade-offs, a prototype encryptor/decryptor was developed. This effort demonstrated the viability of implementing certain encryption techniques in high speed networks. The research prototype processes ATM cells in a SONET OC-3 payload. This paper describes the functionality, reliability, security, and performance design trade-offs investigated with the prototype.
Novel compound semiconductor devices based on III-V nitrides
New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.
Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies
A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.
Aqueous foam toxicology evaluation and hazard review
Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.
Deep x-ray lithography based processing for micromechanics
Deep x-ray lithography based fabrication provides a means to fabricate microactuators with useful output forces. High energy x-ray exposure provides a tool for fabrication of the next generation of precision engineered components. Device characterization, materials science, an metrology continue to pose challenges at this scale.
High performance computing at Sandia National Labs
Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.
Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.
Rapid assembly and use of robotic systems: Saving time and money in new applications
High costs and low productivity of manual operations in radiation, chemical, explosive and other hazardous environments have mandated the use of remote means to accomplish many tasks. However, traditional remote operations have proven to have very low productivity when compared with unencumbered humans. To improve the performance of these systems, computer models augmented by sensors, and modular computing environments are being utilized to automate many unstructured hazardous tasks. Establishment of a common structure for developments of modules such as the Generic Intelligent System Controller (GISC), have allowed many independent groups to develop specialized components that can be rapidly integrated into purpose-built robotic systems. The drawback in using this systems is that the equipment investments for such robotic systems can be substantial. In a resource-competitive environment, the ability to readily and reliably reconfigure and reuse assets operated by other industries, universities, research labs, government entities, etc., is proving to be a crucial advantage. Timely and efficient collaboration between entities has become increasingly important as monetary resources of government programs and entire industries expand or contract in response to rapid changes in production demand, dissolution of political barriers, and adoption of stringent environmental and commercial legislation. Sandia National Laboratories (SNL) has developed the System Composer, Virtual Collaborative Environment (VCE) and A{sup primed} technologies described in this paper that demonstrate an environment for flexible and efficient integration, interaction, and information exchange between disparate entities.
Photocatalytic semiconductor clusters for fuel production
High quality crystalline, monodisperse nanometer-size semiconductor clusters were successfully grown using an inverse micellar synthesis process and their optical and structural properties were studied. Among the materials studied were PbS, FeS{sub 2}, MoS{sub 2}, CdS and related compounds. The results demonstrated strong electronic quantum confinement effects and broad tailorability of the bandgaps with decreasing cluster size, features that are important for the potential use of these materials as photocatalysts for solar fuel production and solar detoxification. The highlights of the work are included in an Executive Summary.
Characteristics of the 2.65 {mu}m atomic xenon laser
The laser characteristics of the 2.65 {mu}m xenon laser transition are reviewed. Measured and extrapolated laser efficiency in nuclear pumped and electron beam pumped system is reported. Previous research has indicated that the reported power efficiency is between 0.1 and 2 percent.
Fourth-generation photovoltaic concentrator system development
O'Neill, M.J.; Mcdanal, A.J.
In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.
Agile manufacturing from a statistical perspective
The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.
Growth and properties of W-B-N diffusion barriers deposited by chemical vapor deposition
The authors have used chemical vapor deposition to grow ternary tungsten-based diffusion barriers to determine if they exhibit properties similar to those of sputter-deposited ternaries. A range of different W-B-N compositions in a band of compositions roughly between 20 and 40% W were produced. The deposition temperature was low, 350 C, and the precursors used are well accepted by the industry. Deposition rates are high for a diffusion barrier application. Resistivities range from 200 to 20,000 {micro}{Omega}-cm, the films with the best barrier properties having {approximately}1,000 {micro}{Omega}-cm resistivities. Adhesion to oxides is sufficient to allow these films to be used as the adhesion layer in a tungsten chemical mechanical polishing plug application. The films are x-ray amorphous as-deposited and have crystallization temperatures of up to 900 C. Barrier performance against Cu has been tested using diode test structures. A composition of W{sub .23}B{sub .49}N{sub .28} was able to prevent diode failure up to a 700 C, 30 minute anneal. These materials, deposited by CVD, display properties similar to those deposited by physical deposition techniques.
Oleoresin Capsicum toxicology evaluation and hazard review
Oleoresin Capsicum (OC) is an extract of the pepper plant used for centuries as a culinary spice (hot peppers). This material has been identified as a safe and effective Less-Than- Lethal weapon for use by Law enforcement and security professionals against assault. The National Institute of Justice (NIJ) is currently also evaluating its use in conjunction with other Less-Than-Lethal agents such as aqueous foam for use in corrections applications. Therefore, a comprehensive toxicological review of the literature was performed for the National Institute of Justice Less-Than-Lethal Force program to review and update the information available on the toxicity and adverse health effects associated with OC exposure. The results of this evaluation indicate that exposure to OC can result in dermatitis, as well as adverse nasal, pulmonary, and gastrointestinal effects in humans. The primary effects of OC exposure include pain and irritation of the mucous membranes of the eyes, nose, and lining of the mouth. Blistering and rash have been shown to occur after chronic or prolonged dermal exposure. Ingestion of capsicum may cause acute stinging of the lips, tongue, and oral mucosa and may lead to vomiting and diarrhea with large doses. OC vapors may also cause significant pulmonary irritation and prolonged cough. There is no evidence of long term effects associated with an acute exposure to OC, and extensive use as a culinary additive and medicinal ointment has further provided no evidence of long term adverse effects following repeated or prolonged exposure.
Superconducting Technology Program Sandia 1994 Annual Report
Roth, E.P.
Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) Process research on the material synthesis of high-temperature superconductors, (2) Investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films, (3) Process development and characterization of high-temperature superconducting wire and tape, and (4) Cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY94 in each of these four areas. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.
Discharge rates of porous carbon double layer capacitors
Eisenmann, E.T.
Double layer capacitors with porous carbon electrodes have very low frequency response limits and correspondingly low charge-discharge rates. Impedance measurements of various commercial double layer capacitors and of carbon electrodes prepared from selected precursor materials were found to yield similar, yet subtly different characteristics. Through modeling with the traditional transmission line equivalent circuit for porous electrodes, a resistive layer can be identified, which forms on carbon films during carbonization and survives the activation procedure. A method for determining the power-to-energy ratio of electrochemical capacitors has been developed. These findings help define new ways for optimizing the properties of double layer capacitors.
Integrated Services Management System (ISMS): A management and decision making tool
Mead, Judith W.
This document provides information concerning the Integrated Services Management System (ISMS) that was developed for the Laboratories Services Division during the period February 1994 through May 1995. ISMS was developed as a formal method for centralized management of programs within the Division. With minor modifications, this system can be adapted for management of all overhead functions at SNL or for sector level program management. Included in this document are the reasons for the creation of this system as well as the resulting benefits. The ISMS consists of six interlinked processes; Issues Management, Task/Activity Planning, Work Decision, Commitment Management, Process/Project Management, and Performance Assessment. Those processes are described in detail within this document. Additionally, lessons learned and suggestions for future improvements are indicated.
Alpha Solarco`s Photovoltaic Concentrator Development program
Anderson, A.; Bailor, B.; Carroll, D.
This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.
Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems
Peters, E.M.; Masso, J.D.
This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.
Fundamental science of nanometer-size clusters
This research has produced a variety of monodisperse, nanometer-size clusters (nanoclusters for short), characterized their size and crystal structure and developed a scientific understanding of the size dependence of their physical properties. Of specific interest were the influence of quantum electronic confinement on the optical properties, magnetic properties, and dielectric properties. These properties were chosen both for their potential practical impact on various applications identified in the National Critical Technologies list (e.g., catalysis, information storage, sensors, environmental remediation, ...) as well as for their importance to the fundamental science of clusters. An Executive Summary provides a description of the major highlights.
Electromagnetic coilgun launcher for space applications
A ground-based electrically-powered launcher could significantly reduce the complexity and cost of space launches for moderate-weight payloads. The EM launch complex could greatly reduce the amount of fuels handling, reduce the turnaround time between launches, allow more concurrence in launch preparation, reduce the manpower requirements for launch vehicle preparation and increase the reliability of launch by using more standardized vehicle preparations. The launch requires high acceleration, so the satellite package must be hardened. This paper presents results of a study to estimate the required launcher parameters, and estimate the cost of such a launch facility. This study is based on electromagnetic gun technology which is constrained to a coaxial geometry to take advantage of the efficiency of closely-coupled coils. The launcher energy and power requirements fall in the range of 40 {minus} 260 GJ and 20 {minus} 400 GW electric. Parametric evaluations have been conducted with a launcher length of 1-2 km, exit velocity of 1-6 kn/s, and payloads to low earth orbit of 100 1000 kg.
View graph presentations of the sixth DOE industry/university/lab forum on robotics for environmental restoration and waste management
The mission of the Robotics Technology Development Program involves the following: develop robotic systems where justified by safety, cost, and/or efficiency arguments; integrate the best talent from National Labs, industry, and universities in focused teams addressing complex-wide problems; and involve customers in the identification and development of needs driven technologies. This presentation focuses on five areas. They are: radioactive tank waste remediation (Richland); mixed waste characterization, treatment, and disposal (Idaho Falls); decontamination and decommissioning (Morgantown); landfill stabilization (Savannah River); and contaminant plumes containment and remediation (Savannah River).
The effects of non-hydrostatic compression and applied electric field on the electromechanical behavior of poled PZT 95/5-2Nb ceramic during the F{sub R1} {yields} A{sub 0} polymorphic phase transformation
We conducted hydrostatic and constant-stress-difference (CSD) experiments at room temperature on two different sintered batches of poled, niobium-doped lead-zirconate-titanate ceramic (PZT 95/5-2Nb). The objective of this test plan was to quantify the effects of nonhydrostatic stress on the electromechanical behavior of the ceramic during the ferroelectric, rhombohedral {yields} antiferroelectric, orthorhombic (FE {yields} AFE) phase transformation. We also performed a series of hydrostatic and triaxial compression experiments in which a 1000 V potential was applied to poled specimens to evaluate any effect of a sustained bias on the transformation. As we predicted from earlier tests on unpoled PZT 95/5-2Nb, increasing the stress difference up to 200 MPa (corresponding to a maximum resolved shear stress of 100 MPa) decreases the mean stress and confining pressure at which the transformation occurs by 25--33%, for both biased and unbiased conditions. This same stress difference also retards the rate of transformation at constant pressurization rate, resulting in reductions of up to an order of magnitude in the rate of charge release and peak voltage attained in our tests. This shear stress-voltage effect offers a plausible, though qualitative explanation for certain systematic failures that have occurred in neutron generator power supplies when seemingly minor design changes have been made. Transformation strains in poled ceramic are anisotropic (differing by up to 33%) in hydrostatic compression, and even more anisotropic under non-hydrostatic stress states. Application of a 1000 V bias appears to slightly increase (by {le}2%) the transformation pressure for poled ceramic, but evidence for this conclusion is weak.
Aztec user`s guide. Version 1
Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.
An image sensor capable of detecting nano-ampere transient signals with strong background illumination
A readout detector integrated circuit (IC) has been developed which is capable of detecting nano-ampere photo-current signals of interest in a high (micro-ampere) background illumination or DC noise level (SNR=92dB). The readout detector sensor IC processes transient signals of interest from a separate photodiode array chip. Low noise signal conditioning, filtering, and signal thresholding implement smart sensor detection of only ``active pixels.`` This detector circuit can also be used to perform signal conditioning for other sensor applications that require detection of very small signals in a high background noise environment.
Experimental measurements of the Hugoniot of stishovite
The crust and mantle of the Earth are primarily composed of silicates. The properties of these materials under compression are of interest for deducing deep-earth composition. As well, the properties of these materials under shock compression are of interest for calculating groundshock propagation. The authors have synthesized, characterized, and performed Hugoniot measurements on monolithic polycrystalline SiO{sub 2} samples which were predominantly stishovite (a high-pressure polymorph). Synthesis was accomplished in a multianvil press with pyrophyllite gaskets and carbon heaters. The samples had densities ranging from 3.80 to 4.07, corresponding to stishovite volume fractions of 0.7 to 0.87, a range confirmed by NMR analysis. Electron microprobe and X-ray fluorescence characterizations showed minor carbon contamination (< 1%), with no other significant impurities. Samples {approximately} 1 mm thick and 3 mm diameter were tested in reverse and forward-ballistics modes on a two-stage light gas gun, using velocity interferometry diagnostics. Impact velocities ranged from 4.0 to 6.5 km/sec. Hugoniot stresses for four tests ranged from 65 to 225 GPa. At higher stresses significant uncertainties arise due to impact tilt/nonplanarity issues. Results are consistent with earlier predictions of the stishovite Hugoniot based on quartz-centered Hugoniot data, static-compression (diamond-anvil cell) data and hydrostatic multianvil cell data. Release behavior appears to be frozen. These results are remarkable in view of the small size of the samples used. Results are compared with current EOS models.
Advanced Materials Laboratory hazards assessment document
Barnett, B.; Banda, Z.
The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.
Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste
Levin, V.
Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.