Publications

2 Results

Search results

Jump to search filters

The PAMTRAK system and its operational issues

Dahly, B.

A system has been developed by Sandia National Laboratories (SNL) as part of the joint laboratory project with Los Alamos National Laboratory and Argonne National Laboratory-West (ANL-W). The objective is to provide support for Safeguards and Security and Nuclear Materials Control and Accountability within the DOE complex. Since its original design PAMTRAK has been enhanced to include material monitoring, personnel monitoring, and video surveillance. Material monitoring is provided by the WATCH (Wireless Alarm Transmission of Container Handling) subsystem by performing continuous surveillance via constantly monitored Tamper Indicating Devices of all material not directly involved in the fuel manufacturing process. Personnel tracking uses radio frequency and infrared sensors to detect unauthorized access to restricted areas and to enforce constant monitoring of containers or other objects within a ``region of interest`` in a storage vault or other restricted area. Advantages of combining these sensor subsystems include reducing personnel radiation exposure by extending the time between required physical inventory intervals as well as adding robustness to existing security measures. PAMTRAK is being demonstrated as part of the integrated materials monitoring and accounting system in the Fuels and Manufacturing Facility (FMF) located at ANL-W. This paper will describe the technologies employed for installation of the system by SNL, as well as the operational issues involved in using the system at ANL-W.

More Details

New PAMTRAK features

Dahly, B.

Sandia is developing a Personnel and Material Tracking System (PAMTRAK) which uses a variety of techniques to monitor material inside a vault in real-time. It can detect material movement using video cameras inside the vault or motion sensors attached to the material. It also contains two prototype attribute monitoring systems that continuously measure material weight, temperature or movement. A site can use any of these alone or together to extend physical inventory intervals. PAMTRAK can reduce the cost of storing material by reducing inventory frequency and radiation exposure to workers. Analysis at Savannah River in 1992 estimated that installing PAMTRAK in the 7 active and future vaults at that site would save $1,073,000 per year by reducing inventory frequency from monthly to yearly. Performing similar calculations now, assuming lower radiation exposure limits of 700m Rem per year, new inventory reduction guidelines allowing a baseline interval of 6 months, and an achieved inventory interval of 3 years, results in an estimated average savings of $400,000 per year. PAMTRAK, since it is real-time, can detect theft or diversion soon enough to give the guard force a chance of recovering the material and apprehending the perpetrator. In performing an inventory a site typically checks only a fraction of the material using random, statistical sampling, while PAMTRAK monitors all material in the vault. In addition to static environments such as vaults, PAMTRAK can be used to protect material in active work areas. Several of the sensor types can ignore activity around material but still report alarms if the material is moved or handled. PAMTRAK includes a personnel tracking capability that allows a site to monitor and restrict personnel movements. It can exclude workers from designated areas unless they have explicit permission to be there. It can also enforce the 2-person rule by requiring a worker to be accompanied by at least one other qualified worker.

More Details
2 Results
2 Results