Publications

Results 76–100 of 210

Search results

Jump to search filters

Solid liner implosions on Z for producing multi-megabar, shockless compressions

Physics of Plasmas

Martin, M.R.; Lemke, Raymond W.; Mcbride, Ryan; Davis, Jean-Paul; Dolan, Daniel H.; Knudson, Marcus D.; Cochrane, K.R.; Sinars, Daniel; Smith, Ian C.; Savage, Mark E.; Stygar, William A.; Killebrew, K.; Flicker, Dawn; Herrmann, Mark H.

Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen, Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50 kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. © 2012 American Institute of Physics.

More Details

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, Michael E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles; Bailey, James E.; Hansen, Stephanie B.; Mcbride, Ryan; Herrmann, Mark H.; Lopez, Andrew J.; Peterson, K.J.; Ampleford, David J.; Jones, Michael; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew R.; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund; Mcpherson, Leroy A.; Harding, Eric H.; Knapp, P.F.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John; Owen, Albert C.; Mckee, G.R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias; Rambo, Patrick K.; Sinars, Daniel; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator

Physical Review Letters

Mcbride, Ryan; Peterson, K.J.; Sefkow, Adam B.; Nakhleh, Charles; Laspe, Amy R.; Lopez, Mike R.; Smith, Ian C.; Atherton, B.; Savage, Mark E.; Stygar, William A.; Slutz, Stephen A.; Rogers, Thomas; Jennings, Christopher A.; Sinars, Daniel; Cuneo, Michael E.; Herrmann, Mark H.; Lemke, Raymond W.; Martin, Matthew R.; Vesey, Roger A.

Abstract not provided.

Transmission line and electromagnetic models of the Mykonos-2 accelerator

Digest of Technical Papers-IEEE International Pulsed Power Conference

Madrid, E.A.; Miller, C.L.; Rose, D.V.; Welch, D.R.; Clark, R.E.; Mostrom, C.B.; Stygar, William A.; Savage, Mark E.; Hinshelwood, D.D.; LeChien, K.R.

Mykonos is a linear transformer driver (LTD) pulsed power accelerator currently undergoing testing at Sandia National Laboratories. Mykonos-2, the initial configuration, includes two 1-MA, 200-kV LTD cavities driving a water-filled transmission line terminated by a resistive load. Transmission line and 3D electromagnetic (EM) simulation models of high-current LTD cavities have been developed [D.V. Rose et al. Phys. Rev. ST Accel. Beams 13, 90401 (2010)]. These models have been used to develop an equivalent two-cavity transmission line model of Mykonos-2 using the BERTHA transmission line code. The model explicitly includes 40 bricks per cavity and detailed representations of the water-filled transmission line and resistive load. (A brick consists of two capacitors and a switch connected in series.) This model is compared to 3D EM simulations of the entire accelerator including detailed representations of the individual capacitors and switches in each cavity. Good agreement is obtained between the two simulation models and both models are in good agreement with preliminary data from Mykonos-2. © 2011 IEEE.

More Details

Temporally shaped current pulses on a two-cavity linear transformer driver system

Digest of Technical Papers-IEEE International Pulsed Power Conference

Savage, Mark E.; Mazarakis, Michael G.; LeChien, K.R.; Stoltzfus, Brian; Stygar, William A.; Fowler, William E.; Madrid, E.A.; Miller, C.L.; Rose, D.V.

An important application for low impedance pulsed power drivers is creating high pressures for shock compression of solids. These experiments are useful for studying material properties under kilobar to megabar pressures. The Z driver at Sandia National Laboratories has been used for such studies on a variety of materials, including heavy water, diamond, and tantalum, to name a few. In such experiments, it is important to prevent shock formation in the material samples. Shocks can form as the sound speed increases with loading; at some depth in the sample a pressure significantly higher than the surface pressure can result. The optimum pressure pulse shape to prevent such shocks depends on the test material and the sample thickness, and is generally not a simple sinusoidal-shaped current as a function of time. A system that can create a variety of pulse shapes would be desirable for testing various materials and sample thicknesses. A large number of relatively fast pulses, combined, could create the widest variety of pulse shapes. Linear transformer driver systems, whose cavities consist of many parallel capacitor-switch circuits, could have considerable agility in pulse shape. © 2011 IEEE.

More Details
Results 76–100 of 210
Results 76–100 of 210