Publications

Results 76–83 of 83

Search results

Jump to search filters

Numerical predictions and experimental results of a dry bay fire environment

Black, Amalia R.; Gill, Walt; Suo-Anttila, Jill M.

The primary objective of the Safety and Survivability of Aircraft Initiative is to improve the safety and survivability of systems by using validated computational models to predict the hazard posed by a fire. To meet this need, computational model predictions and experimental data have been obtained to provide insight into the thermal environment inside an aircraft dry bay. The calculations were performed using the Vulcan fire code, and the experiments were completed using a specially designed full-scale fixture. The focus of this report is to present comparisons of the Vulcan results with experimental data for a selected test scenario and to assess the capability of the Vulcan fire field model to accurately predict dry bay fire scenarios. Also included is an assessment of the sensitivity of the fire model predictions to boundary condition distribution and grid resolution. To facilitate the comparison with experimental results, a brief description of the dry bay fire test fixture and a detailed specification of the geometry and boundary conditions are included. Overall, the Vulcan fire field model has shown the capability to predict the thermal hazard posed by a sustained pool fire within a dry bay compartment of an aircraft; although, more extensive experimental data and rigorous comparison are required for model validation.

More Details

Sandia heat flux gauge thermal response and uncertainty models

ASTM Special Technical Publication

Blanchat, Tom; Humphries, Larry; Gill, Walt

A study was performed on the Sandia Heat Flux Gauge (HFG) developed as a rugged, cost effective technique for performing steady state heat flux measurements in the pool fire environment. The technique involved reducing the time-temperature history of a thin metal plate to an incident heat flux via a dynamic thermal model, even though the gauge was intended for use at steady state. A validation experiment was presented where the gauge was exposed to a step input of radiant heat flux.

More Details

Uncertainty estimation in the determination of thermal conductivity of 304 stainless steel1

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Blackwell, Bennie F.; Gill, Walt; Dowding, Kevin J.; Easterling, Robert G.

The thermal conductivity of 304 stainless steel has been estimated from transient temperature measurements and knowing the volumetric heat capacity. Sensitivity coefficients were used to guide the design of this experiment as well as to estimate the confidence interval in the estimated thermal conductivity. The uncertainty on the temperature measurements was estimated by several means, and its impact on the estimated conductivity is discussed. The estimated thermal conductivity of 304 stainless steel is consistent with results from other sources.

More Details
Results 76–83 of 83
Results 76–83 of 83