Publications

Results 1–25 of 50

Search results

Jump to search filters

Mechanical Environment Test Specifications Derived from Equivalent Energy in Fixed Base Modes, with Frequency Shifts from Unit-to-Unit Variability

Conference Proceedings of the Society for Experimental Mechanics Series

Skousen, Troy J.; Mayes, R.L.

The purpose of mechanical environment testing is to prove that designs can withstand the loads imparted on them under operating conditions. This is dependent not only on the test article construction but also on the loads imparted through its boundary conditions. Current practices develop environment test specifications from field responses using a single degree of freedom input control with no consideration for the mild to severe deviations from the field motion caused by the laboratory boundary condition. Test specifications are considered conservative with the assumption that most of the steps taken to generate them (e.g., straight-line envelopes and adding 3 dB) result in appropriately conservative specifications. However, without an accurate quantifiable measure of conservatism, designs can be easily mis-tested yielding unnecessarily high costs. Previous work showed a modal model for components excited through base-mounted fixtures to generate specifications with much lower uncertainty and with guaranteed quantifiable conservatism. The method focused on reproducing in-service modal energy in the test configuration by controlling the 6 degree-of-freedom input motion. That work generated test specifications with enough conservatism to account for unit-to-unit variability in the damping of the test article. This paper focuses on generating conservative specifications while considering resonant frequency shifts as a parameter for unit-to-unit variability.

More Details

Mechanical environment test specifications derived from equivalent energy in fixed base modes

Conference Proceedings of the Society for Experimental Mechanics Series

Skousen, Troy J.; Mayes, R.L.

The main point of mechanical environment testing is to prove that designs can withstand the loads imparted on them while being exposed to in-service conditions. This is dependent not only on the test article construction, but also the loads imparted through its boundary conditions. Current practices for developing environment test specification are typically based on inadequate information reduced to single input point control with large uncertainty as compared to the field environment. Yet the test specifications are considered conservative, with the assumption that most of the adjustment for uncertainty is conservatism. For base mounted components, a modal model is presented that can be used to generate specifications with much lower uncertainty and with guaranteed quantifiable conservatism. In this method, the modal energies in the fixed base modes of the article due to the in-service loads are determined. Using the fixed base modes of the test article as a basis, the test specification is derived by determining what fixture motion is required to emulate the in-service environment. The specification method accounts for frequency shifts between the in-service and test configurations. Variability in nominal test articles can be included in the derivation of the test specifications. Real hardware under in-service environment loads and in a ground test fixture and loading configuration are considered.

More Details

Mechanical environment test specifications derived from equivalent energy in fixed base modes

Conference Proceedings of the Society for Experimental Mechanics Series

Skousen, Troy J.; Mayes, R.L.

The main point of mechanical environment testing is to prove that designs can withstand the loads imparted on them while being exposed to in-service conditions. This is dependent not only on the test article construction, but also the loads imparted through its boundary conditions. Current practices for developing environment test specification are typically based on inadequate information reduced to single input point control with large uncertainty as compared to the field environment. Yet the test specifications are considered conservative, with the assumption that most of the adjustment for uncertainty is conservatism. For base mounted components, a modal model is presented that can be used to generate specifications with much lower uncertainty and with guaranteed quantifiable conservatism. In this method, the modal energies in the fixed base modes of the article due to the in-service loads are determined. Using the fixed base modes of the test article as a basis, the test specification is derived by determining what fixture motion is required to emulate the in-service environment. The specification method accounts for frequency shifts between the in-service and test configurations. Variability in nominal test articles can be included in the derivation of the test specifications. Real hardware under in-service environment loads and in a ground test fixture and loading configuration are considered.

More Details

Comparison of multi-axis testing of the BARC structure with varying boundary conditions

Conference Proceedings of the Society for Experimental Mechanics Series

Rohe, Daniel P.; Schultz, Ryan S.; Schoenherr, Tyler F.; Skousen, Troy J.; Jones, Richard J.

The Box Assembly with Removable Component (BARC) structure was developed as a challenge problem for those investigating boundary conditions and their effect on structural dynamic tests. To investigate the effects of boundary conditions on the dynamic response of the Removable Component, it was tested in three configurations, each with a different fixture and thus a different boundary condition. A “truth” configuration test with the component attached to its next-level assembly (the Box) was first performed to provide data that multi-axis tests of the component would aim to replicate. The following two tests aimed to reproduce the component responses of the first test through multi-axis testing. The first of these tests is a more “traditional” vibration test with the removable component attached to a “rigid” plate fixture. A second set of these tests replaces the fixture plate with flexible fixtures designed using topology optimization and created using additive manufacturing. These two test approaches are compared back to the truth test to determine how much improvement can be obtained in a laboratory test by using a fixture that is more representative of the compliance of the component’s assembly.

More Details

Multi-degree of Freedom Energy Analysis for Identification of Failure Risk in Structural Components Subjected to Random Vibration and Shock Loading

Journal of Vibration and Acoustics

Babuska, Vit B.; Sisemore, Carl; Skousen, Troy J.

When designing or analyzing a mechanical system, energy quantities provide insight into the severity of shock and vibration environments; however, the energy methods in the literature do not address localized behavior because energy quantities are usually computed for an entire structure. The main objective of this paper is to show how to compute the energy in the components of a mechanical system. The motivation for this work is that most systems fail functionally due to component failure, not because the primary structure was overloaded, and the ability to easily compute the spatial distribution of energy helps identify failure sensitive components. The quantity of interest is input energy. That input energy can be decoupled modally is well known. What is less appreciated is that input energy can be computed at the component level exactly, using the component effective modal mass. We show the steady state input energy can be decomposed both spatially and modally and computed using input power spectra. A numerical example illustrates the spatial and modal decomposition of input energy and its utility in identifying components at risk of damage in random vibration and shock environments. Our work shows that the modal properties of the structure and the spectral content of the input must be considered together to assess damage risk. Because input energy includes absorbed energy as well as relative kinetic energy and dissipated energy, it is the recommended energy quantity for assessing the severity for both random vibration and shock environments on a structure.

More Details
Results 1–25 of 50
Results 1–25 of 50