Barium titanate (BTO) nanoparticles show great potential for use in electrostatic capacitors with high energy density. This includes both polymer composite and sintered capacitors. However, questions about the nanoparticles’ size distribution, amount of agglomeration, and surface ligand effect on performance properties remain. Reducing particle agglomeration is a crucial step to understanding the properties of nanoscale particles, as agglomeration has significant effects on the composite dielectric constant. BTO surface functionalization using phosphonic acids is known reduce BTO nanoparticle agglomeration. We explore solution synthesized 10 nm BTO particles with tert-butylphosphonic acid ligands. Recent methods to quantifying agglomeration using an epoxy matrix before imaging shows that tert-butylphosphonic acid ligands reduce BTO agglomeration by 33%. Thermometric, spectroscopic, and computational methods provide confirmation of ligand binding and provide evidence of multiple ligand binding modes on the BTO particle surface.
Using the thesis of W.R. Nolan (cite) as a guide, Cobalt Iron (CoFe) powders were reacted with 0.1 wt.% and 0.2 wt.% phosphoric acid in a 20:1 ratio of acetone to phosphoric acid. The powders were then dried at room temperature. The resulting phosphate coated CoFe was then mixed with 0.75 wt.% of the lubricant N,N' ethylene bis-stearamide (trade name: Acrawax C) and hot pressed to form a consolidated soft magnetic material referred to as CoFeP. With an avenue of synthesis for CoFeP determined, a proper amount of stock was synthesized for continuous “brick” production. While under current optimization, these 1x1 mm magnetic bricks will ultimately be placed and secured along the inside wall of each MK Magnetics transformer core by an appropriate CoFeP dispersed epoxy. As of now each brick has been produced though a pressing and annealing process via square 2x2 cm die. Before a brick is made a pressure calculation is run to ensure the dies maximum operating pressure is not exceeded. Figure 1. ensures the user’s safety by showing that the tons-on-ram required for a 2x2 cm square die to reach 760 MPa is below the point of die failure.
For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic polarization and high electrical resistivity are needed. This work aimed at the development of a soft magnetic composite synthesized via spark plasma sintering with both high saturation magnetic polarization and high electrical resistivity for efficient soft magnetic cores. CoFe powder particles coated with an insulating layer of Al2O3 were used as feedstock material to improve the electrical resistivity while retaining high saturation magnetic polarization. By maintaining a continuous non-magnetic Al2O3 phase throughout the material, both a high saturation magnetic polarization, above 1.5 T, and high electrical resistivity, above 100 μΩ·m, were achieved. Through microstructural characterization of samples consolidated at various temperatures, the role of microstructural evolution on the magnetic and electronic properties of the composite was elucidated. Upon consolidation at relatively high temperature, the CoFe was to found plastically deform and flow into the Al2O3 phase at the particle boundaries and this phenomenon was attributed to low resistivity in the composite. In contrast, at lower consolidation temperatures, perforation of the Al2O3 phase was not observed and a high electrical resistivity was achieved, while maintaining a high magnetic polarization, ideal for more efficient soft magnetic materials for transformers and inductors.
Abstract: In this study, dense bulk iron nitrides (FexN) were synthesized for the first time ever using spark plasma sintering (SPS) of FexN powders. The Fe4N phase of iron nitride in particular has significant potential to serve as a new soft magnetic material in both transformer and inductor cores and electrical machines. The density of SPSed FexN increased with SPS temperature and pressure. The microstructure of the consolidated bulk FexN was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRD revealed a primary phase of Fe4N with secondary phases of Fe3N and metallic iron. Finite element analysis (FEA) was also applied to investigate and explain localized heating and temperature distribution during SPS. The effects of processing on interface bonding formation and phase evolution were investigated and discussed in detail to provide insight into fundamental phenomena and microstructural evolution in SPSed FexN. Graphic abstract: [Figure not available: see fulltext.]
Soft-magnetic alloys exhibit exceptional functional properties that are beneficial for a variety of electromagnetic applications. These alloys are conventionally manufactured into sheet or bar forms using well-established insgot metallurgy practices that involve hot- and cold-working steps. However, recent developments in process metallurgy have unlocked opportunities to directly produce bulk soft-magnetic alloys with improved, and often tailorable, structure–property relationships that are unachievable conventionally. The emergence of unconventional manufacturing routes for soft-magnetic alloys is largely motivated by the need to improve the energy efficiency of electromagnetic devices. In this review, literature that details emerging manufacturing approaches for soft-magnetic alloys is overviewed. This review covers (1) severe plastic deformation, (2) recent advances in melt spinning, (3) powder-based methods, and (4) additive manufacturing. These methods are discussed in comparison with conventional rolling and bar processing. Perspectives and recommended future research directions are also discussed.
In order to meet 2025 goals for enhanced peak power (100 kW), specific power (50 kW/L), and reduced cost (3.3 $/kW) in a motor that can operate at ≥ 20,000 rpm, improved soft magnetic materials must be developed. Better performing soft magnetic materials will also enable electric motors without rare earth elements. In fact, replacement of permanent magnets with soft magnetic materials was highlighted in the Electrical and Electronics Technical Team (EETT) Roadmap as a R&D pathway for meeting 2025 targets. Eddy current losses in conventional soft magnetic materials, such as silicon steel, begin to significantly impact motor efficiency as rotational speed is increased. Soft magnetic composites (SMCs), which combine magnetic particles with an insulating matrix to boost electrical resistivity (ρ) and decrease eddy current losses, even at higher operating frequencies (or rotational speeds), are an attractive solution. Today, SMCs are being fabricated with values of ρ ranging between 10-3 to 10-1 μohm∙m, which is significantly higher than 3% silicon steel (~0.5 μohm∙m). The isotropic nature of SMCs is ideally suited for motors with 3D flux paths, such as axial flux motors. Additionally, the manufacturing cost of SMCs is low and they are highly amenable to advanced manufacturing and net-shaping into complex geometries, which further reduces manufacturing costs. There is still significant room for advancement in SMCs, and therefore additional improvements in electrical machine performance. For example, despite the inclusion of a non-magnetic insulating material, the electrical resistivities of SMCs are still far below that of soft ferrites (10 – 108 μohm∙m).
Barium titanate (BTO) is a ferroelectric perovskite material used in energy storage applications because of its high dielectric constant. A previous study showed that the dielectric constant for BTO nanoparticles drastically increases to over 15,000 at a particle size of 70 nm. This result is highly contested, but its implications to energy storage motivated our investigation into the dielectric constants of BTO nanoparticles that are incorporated into a polymer matrix. We developed a novel method of using image processing techniques on transmission electron microscope images of BTO-polymer nanocomposites. Data on the positions, shapes, sizes, and orientations of BTO nanoparticles were used to build more realistic computational models that simulate the dielectric behavior of the nanocomposites. Here, we investigate the relationship between regions of enhanced electric field and the composite dielectric constant.