Publications

Results 26–50 of 87

Search results

Jump to search filters

Data Services for Visualization and Analysis - ASC Level II Milestone (7186)

Templet Jr., Gary J.; Glickman, Matthew R.; Kordenbrock, Todd H.; Levy, Scott L.; Lofstead, Gerald F.; Mauldin, Jeff; Otahal, Thomas J.; Ulmer, Craig D.; Widener, Patrick W.; Oldfield, Ron A.

A new in transit Data Service is presented and compared to the traditional file-based workflow and the newly refactored in situ Catalyst workflow. Each workflow is enabled by the IOSS mesh interface equipped with data management layers for Exodus and CGNS (file-based), Catalyst (in situ), and FAODEL (in transit). FAODEL is a distributed object store that can transmit data across MPI allocations. Catalyst is a Para View-based visualization capability developed as part of the CSSE Data Services effort. The workflows considered here take SPARC data into Catalyst for visualization post-processing. Although still in unoptimized form, we show that the in transit approach is a viable alternative to file-based and in situ workflows and offers several advantages to both simulation and post-processing developers. Since IOSS is a mature interface with wide adoption across Sandia and externally, each workflow can be reconfigured to use different simulations that generate mesh data and post-processing tools that consume it.

More Details

The case for explicit reuse semantics for RDMA communication

Proceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020

Levy, Scott L.; Widener, Patrick W.; Ulmer, Craig D.; Kordenbrock, Todd H.

Remote Direct Memory Access (RDMA) is an increasingly important technology in high-performance computing (HPC). RDMA provides low-latency, high-bandwidth data transfer between compute nodes. Additionally, it does not require explicit synchronization with the destination processor. Eliminating unnecessary synchronization can significantly improve the communication performance of large-scale scientific codes. A long-standing challenge presented by RDMA communication is mitigating the cost of registering memory with the network interface controller (NIC). Reusing memory once it is registered has been shown to significantly reduce the cost of RDMA communication. However, existing approaches for reusing memory rely on implicit memory semantics. In this paper, we introduce an approach that makes memory reuse semantics explicit by exposing a separate allocator for registered memory. The data and analysis in this paper yield the following contributions: (i) managing registered memory explicitly enables efficient reuse of registered memory; (ii) registering large memory regions to amortize the registration cost over multiple user requests can significantly reduce cost of acquiring new registered memory; and (iii) reducing the cost of acquiring registered memory can significantly improve the performance of RDMA communication. Reusing registered memory is key to high-performance RDMA communication. By making reuse semantics explicit, our approach has the potential to improve RDMA performance by making it significantly easier for programmers to efficiently reuse registered memory.

More Details

Space-Efficient Reed-Solomon Encoding to Detect and Correct Pointer Corruption

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Levy, Scott L.; Ferreira, Kurt B.

Concern about memory errors has been widespread in high-performance computing (HPC) for decades. These concerns have led to significant research on detecting and correcting memory errors to improve performance and provide strong guarantees about the correctness of the memory contents of scientific simulations. However, power concerns and changes in memory architectures threaten the viability of current approaches to protecting memory (e.g., Chipkill). Returning to less protective error-correcting codes (ECC), e.g., single-error correction, double-error detection (SECDED), may increase the frequency of memory errors, including silent data corruption (SDC). SDC has the potential to silently cause applications to produce incorrect results and mislead domain scientists. We propose an approach for exploiting unnecessary bits in pointer values to support encoding the pointer with a Reed-Solomon code. Encoding the pointer allows us to provides strong capabilities for correcting and detecting corruption of pointer values. In this paper, we provide a detailed description of how we can exploit unnecessary pointer bits to store Reed-Solomon parity symbols. We evaluate the performance impacts of this approach and examine the effectiveness of the approach against corruption. Our results demonstrate that encoding and decoding is fast (less than 45 per event) and that the protection it provides is robust (the rate of miscorrection is less than 5% even for significant corruption). The data and analysis presented in this paper demonstrates the power of our approach. It is fast, tunable, requires no additional per-pointer storage resources, and provides robust protection against pointer corruption.

More Details

Evaluating tradeoffs between MPI message matching offload hardware capacity and performance

ACM International Conference Proceeding Series

Levy, Scott L.; Ferreira, Kurt B.

Although its demise has been frequently predicted, the Message Passing Interface (MPI) remains the dominant programming model for scientific applications running on high-performance computing (HPC) systems. MPI specifies powerful semantics for interprocess communication that have enabled scientists to write applications for simulating important physical phenomena. However, these semantics have also presented several significant challenges. For example, the existence of wildcard values has made the efficient enforcement of MPI message matching semantics challenging. Significant research has been dedicated to accelerating MPI message matching. One common approach has been to offload matching to dedicated hardware. One of the challenges that hardware designers have faced is knowing how to size hardware structures to accommodate outstanding match requests. Applications that exceed the capacity of specialized hardware typically must fall back to storing match requests in bulk memory, e.g. DRAM on the host processor. In this paper, we examine the implications of hardware matching and develop guidance on sizing hardware matching structure to strike a balance between minimizing expensive dedicated hardware resources and overall matching performance. By examining the message matching behavior of several important HPC workloads, we show that when specialized hardware matching is not dramatically faster than matching in memory the offload hardware's match queue capacity can be reduced without significantly increasing match time. On the other hand, effectively exploiting the benefits of very fast specialized matching hardware requires sufficient storage resources to ensure that every search completes in the specialized hardware. The data and analysis in this paper provide important guidance for designers of MPI message matching hardware.

More Details

Using simulation to examine the effect of MPI message matching costs on application performance

Parallel Computing

Levy, Scott L.; Ferreira, Kurt B.; Schonbein, Whit; Grant, Ryan E.; Dosanjh, Matthew D.

Attaining high performance with MPI applications requires efficient message matching to minimize message processing overheads and the latency these overheads introduce into application communication. In this paper, we use a validated simulation-based approach to examine the relationship between MPI message matching performance and application time-to-solution. Specifically, we examine how the performance of several important HPC workloads is affected by the time required for matching. Our analysis yields several important contributions: (i) the performance of current workloads is unlikely to be significantly affected by MPI matching unless match queue operations get much slower or match queues get much longer; (ii) match queue designs that provide sublinear performance as a function of queue length are unlikely to yield much benefit unless match queue lengths increase dramatically; and (iii) we provide guidance on how long the mean time per match attempt may be without significantly affecting application performance. The results and analysis in this paper provide valuable guidance on the design and development of MPI message match queues.

More Details

Hardware MPI message matching: Insights into MPI matching behavior to inform design: Hardware MPI message matching

Concurrency and Computation. Practice and Experience

Ferreira, Kurt B.; Grant, Ryan E.; Levenhagen, Michael J.; Levy, Scott L.; Groves, Taylor

Here, this paper explores key differences of MPI match lists for several important United States Department of Energy (DOE) applications and proxy applications. This understanding is critical in determining the most promising hardware matching design for any given high-speed network. The results of MPI match list studies for the major open-source MPI implementations, MPICH and Open MPI, are presented, and we modify an MPI simulator, LogGOPSim, to provide match list statistics. These results are discussed in the context of several different potential design approaches to MPI matching–capable hardware. The data illustrate the requirements for different hardware designs in terms of performance and memory capacity. Finally, this paper's contributions are the collection and analysis of data to help inform hardware designers of common MPI requirements and highlight the difficulties in determining these requirements by only examining a single MPI implementation.

More Details

The upcoming storm: The implications of increasing core count on scalable system software

Advances in Parallel Computing

Dosanjh, Matthew D.; Grant, Ryan E.; Hjelm, Nathan; Levy, Scott L.; Schonbein, William W.

As clock speeds have stagnated, the number of cores in a node has been drastically increased to improve processor throughput. Most scalable system software was designed and developed for single-threaded environments. Multithreaded environments become increasingly prominent as application developers optimize their codes to leverage the full performance of the processor; however, these environments are incompatible with a number of assumptions that have driven scalable system software development. This paper will highlight a case study of this mismatch focusing on MPI message matching. MPI message matching has been designed and optimized for traditional serial execution. The reduced determinism in the order of MPI calls can significantly reduce the performance of MPI message matching, potentially overtaking time-per-iteration targets of many applications. Different proposed techniques attempt to address these issues and enable multithreaded MPI usage. These approaches highlight a number of tradeoffs that make adapting MPI message matching complex. This case study and its proposed solutions highlight a number of general concepts that need to be leveraged in the design of next generation scaleable system software.

More Details

Mediating Data Center Storage Diversity in HPC Applications with FAODEL

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Widener, Patrick W.; Ulmer, Craig D.; Levy, Scott L.; Kordenbrock, Todd H.; Templet, Gary J.

Composition of computational science applications into both ad hoc pipelines for analysis of collected or generated data and into well-defined and repeatable workflows is becoming increasingly popular. Meanwhile, dedicated high performance computing storage environments are rapidly becoming more diverse, with both significant amounts of non-volatile memory storage and mature parallel file systems available. At the same time, computational science codes are being coupled to data analysis tools which are not filesystem-oriented. In this paper, we describe how the FAODEL data management service can expose different available data storage options and mediate among them in both application- and FAODEL-directed ways. These capabilities allow applications to exploit their knowledge of the different types of data they may exchange during a workflow execution, and also provide FAODEL with mechanisms to proactively tune data storage behavior when appropriate. We describe the implementation of these capabilities in FAODEL and how they are used by applications, and present preliminary performance results demonstrating the potential benefits of our approach.

More Details

Using simulation to examine the effect of MPI message matching costs on application performance

ACM International Conference Proceeding Series

Levy, Scott L.; Ferreira, Kurt B.

Attaining high performance with MPI applications requires efficient message matching to minimize message processing overheads and the latency these overheads introduce into application communication. In this paper, we use a validated simulation-based approach to examine the relationship between MPI message matching performance and application time-to-solution. Specifically, we examine how the performance of several important HPC workloads is affected by the time required for matching. Our analysis yields several important contributions: (i) the performance of current workloads is unlikely to be significantly affected by MPI matching unless match queue operations get much slower or match queues get much longer; (ii) match queue designs that provide sublinear performance as a function of queue length are unlikely to yield much benefit unless match queue lengths increase dramatically; and (iii) we provide guidance on how long the mean time per match attempt may be without significantly affecting application performance. The results and analysis in this paper provide valuable guidance on the design and development of MPI message match queues.

More Details

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solutions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Characterizing MPI matching via trace-based simulation

Parallel Computing

Ferreira, Kurt B.; Levy, Scott L.; Laros, James H.; Grant, Ryan E.

With the increased scale expected on future leadership-class systems, detailed information about the resource usage and performance of MPI message matching provides important insights into how to maintain application performance on next-generation systems. However, obtaining MPI message matching performance data is often not possible without significant effort. A common approach is to instrument an MPI implementation to collect relevant statistics. While this approach can provide important data, collecting matching data at runtime perturbs the application's execution, including its matching performance, and is highly dependent on the MPI library's matchlist implementation. In this paper, we introduce a trace-based simulation approach to obtain detailed MPI message matching performance data for MPI applications without perturbing their execution. Using a number of key parallel workloads and microbenchmarks, we demonstrate that this simulator approach can rapidly and accurately characterize matching behavior. Specifically, we use our simulator to collect several important statistics about the operation of the MPI posted and unexpected queues. For example, we present data about search lengths and the duration that messages spend in the queues waiting to be matched. Data gathered using this simulation-based approach have significant potential to aid hardware designers in determining resource allocation for MPI matching functions and provide application and middleware developers with insight into the scalability issues associated with MPI message matching.

More Details

Open science on Trinity's knights landing partition: An analysis of user job data

ACM International Conference Proceeding Series

Levy, Scott L.; Laros, James H.; Ferreira, Kurt B.

High-performance computing (HPC) systems are critically important to the objectives of universities, national laboratories, and commercial companies. Because of the cost of deploying and maintaining these systems ensuring their efficient use is imperative. Job scheduling and resource management are critically important to the efficient use of HPC systems. As a result, significant research has been conducted on how to effectively schedule user jobs on HPC systems. Developing and evaluating job scheduling algorithms, however, requires a detailed understanding of how users request resources on HPC systems. In this paper, we examine a corpus of job data that was collected on Trinity, a leadership-class supercomputer. During the stabilization period of its Intel Xeon Phi (Knights Landing) partition, it was made available to users outside of a classified environment for the Trinity Open Science Phase 2 campaign. We collected information from the resource manager about each user job that was run during this Open Science period. In this paper, we examine the jobs contained in this dataset. Our analysis reveals several important characteristics of the jobs submitted during the Open Science period and provides critical insight into the use of one of the most powerful supercomputers in existence. Specifically, these data provide important guidance for the design, development, and evaluation of job scheduling and resource management algorithms.

More Details

It’s not the heat, it’s the humidity: Scheduling resilience activity at scale

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Widener, Patrick W.; Ferreira, Kurt B.; Levy, Scott L.

Maintaining the performance of high-performance computing (HPC) applications with the expected increase in failures is a major challenge for next-generation extreme-scale systems. With increasing scale, resilience activities (e.g. checkpointing) are expected to become more diverse, less tightly synchronized, and more computationally intensive. Few existing studies, however, have examined how decisions about scheduling resilience activities impact application performance. In this work, we examine the relationship between the duration and frequency of resilience activities and application performance. Our study reveals several key findings: (i) the aggregate amount of time consumed by resilience activities is not an effective metric for predicting application performance; (ii) the duration of the interruptions due to resilience activities has the greatest influence on application performance; shorter, but more frequent, interruptions are correlated with better application performance; and (iii) the differential impact of resilience activities across applications is related to the applications’ inter-collective frequencies; the performance of applications that perform infrequent collective operations scales better in the presence of resilience activities than the performance of applications that perform more frequent collective operations. This initial study demonstrates the importance of considering how resilience activities are scheduled. We provide critical analysis and direct guidance on how the resilience challenges of future systems can be met while minimizing the impact on application performance.

More Details

EMPRESS-Extensible metadata provider for extreme-scale scientific simulations

Proceedings of PDSW-DISCS 2017 - 2nd Joint International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems - Held in conjunction with SC 2017: The International Conference for High Performance Computing, Networking, Storage and Analysis

Lawson, Margaret R.; Lofstead, Gerald F.; Levy, Scott L.; Widener, Patrick W.; Ulmer, Craig D.; Mukherjee, Shyamali M.; Templet, Gary J.; Kordenbrock, Todd H.

Significant challenges exist in the efficient retrieval of data from extreme-scale simulations. An important and evolving method of addressing these challenges is application-level metadata management. Historically, HDF5 and NetCDF have eased data retrieval by offering rudimentary attribute capabilities that provide basic metadata. ADIOS simplified data retrieval by utilizing metadata for each process' data. EMPRESS provides a simple example of the next step in this evolution by integrating per-process metadata with the storage system itself, making it more broadly useful than single file or application formats. Additionally, it allows for more robust and customizable metadata.

More Details
Results 26–50 of 87
Results 26–50 of 87