Publications

Results 101–125 of 154

Search results

Jump to search filters

Unified computational model of transport in metal-insulating oxide-metal systems

Applied Physics A: Materials Science and Processing

Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; Agarwal, Sapan; James, Conrad D.; Marinella, Matthew

A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift–diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

More Details

Piecewise empirical model (PEM) of resistive memory for pulsed analog and neuromorphic applications

Journal of Computational Electronics

Marinella, Matthew; Niroula, John; Agarwal, Sapan; Jacobs-Gedrim, Robin B.; Hughart, David R.; Hsia, Alexander W.; James, Conrad D.

With the end of Dennard scaling and the ever-increasing need for more efficient, faster computation, resistive switching devices (ReRAM), often referred to as memristors, are a promising candidate for next generation computer hardware. These devices show particular promise for use in an analog neuromorphic computing accelerator as they can be tuned to multiple states and be updated like the weights in neuromorphic algorithms. Modeling a ReRAM-based neuromorphic computing accelerator requires a compact model capable of correctly simulating the small weight update behavior associated with neuromorphic training. These small updates have a nonlinear dependence on the initial state, which has a significant impact on neural network training. Consequently, we propose the piecewise empirical model (PEM), an empirically derived general purpose compact model that can accurately capture the nonlinearity of an arbitrary two-terminal device to match pulse measurements important for neuromorphic computing applications. By defining the state of the device to be proportional to its current, the model parameters can be extracted from a series of voltages pulses that mimic the behavior of a device in an analog neuromorphic computing accelerator. This allows for a general, accurate, and intuitive compact circuit model that is applicable to different resistance-switching device technologies. In this work, we explain the details of the model, implement the model in the circuit simulator Xyce, and give an example of its usage to model a specific Ta / TaO x device.

More Details

Impact of linearity and write noise of analog resistive memory devices in a neural algorithm accelerator

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Katherine; Stevens, Jim E.; Van Heukelom, Michael; Hughart, David R.; James, Conrad D.; Marinella, Matthew

Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. This suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.

More Details

Visible Quantum Nanophotonics

Subramania, Ganapathi S.; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel; Coltrin, Michael E.; Agarwal, Sapan; Anderson, P.D.; Leung, Ben

The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.

More Details

Achieving ideal accuracies in analog neuromorphic computing using periodic carry

Digest of Technical Papers - Symposium on VLSI Technology

Agarwal, Sapan; Jacobs-Gedrim, Robin B.; Hsia, Alexander W.; Hughart, David R.; Fuller, Elliot J.; Talin, Albert A.; James, Conrad D.; Plimpton, Steven J.; Marinella, Matthew

Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.

More Details

Achieving ideal accuracies in analog neuromorphic computing using periodic carry

Digest of Technical Papers - Symposium on VLSI Technology

Agarwal, Sapan; Jacobs-Gedrim, Robin B.; Hsia, Alexander W.; Hughart, David R.; Fuller, Elliot J.; Talin, Albert A.; James, Conrad D.; Plimpton, Steven J.; Marinella, Matthew

Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.

More Details

Compensating for parasitic voltage drops in resistive memory arrays

2017 IEEE 9th International Memory Workshop, IMW 2017

Agarwal, Sapan; Schiek, Richard; Marinella, Matthew

Parasitic resistances cause devices in a resistive memory array to experience different read/write voltages depending on the device location, resulting in uneven writes and larger leakage currents. We present a new method to compensate for this by adding extra series resistance to the drivers to equalize the parasitic resistance seen by all the devices. This allows for uniform writes, enabling multi-level cells with greater numbers of distinguishable levels, and reduced write power, enabling larger arrays.

More Details
Results 101–125 of 154
Results 101–125 of 154