Publications

Results 76–100 of 113

Search results

Jump to search filters

Critical detonation thickness in vapor-deposited pentaerythritol tetranitrate (PETN) films

AIP Conference Proceedings

Tappan, Alexander S.; Knepper, Robert; Wixom, Ryan R.; Marquez, Michael P.; Ball, James P.; Miller, Jill C.

The use of physical vapor deposition is an attractive technique to produce microenergetic samples to study sub-millimeter explosive behavior. Films of the high explosive PETN (pentaerythritol tetranitrate) were deposited through vacuum thermal sublimation. Deposition conditions were varied to understand the effect of substrate cooling capacity and substrate temperature during deposition. PETN films were characterized with surface profilometry and scanning electron microscopy. Detonation velocity versus PETN film thickness was analyzed using a variation of the standard form for analysis of the diameter effect. Results were compared with previous work conducted on PETN films deposited with lower substrate cooling capacity. Seemingly subtle variations in PETN deposition conditions led to differences in detonation behaviors such as critical thickness for detonation, detonation velocity at "infinite" thickness, and the shape of the critical thickness curves. © 2012 American Institute of Physics.

More Details

Controlling the microstructure of vapor-deposited pentaerythritol tetranitrate (PETN) films

Proceedings - 14th International Detonation Symposium, IDS 2010

Knepper, Robert; Tappan, Alexander S.; Wixom, Ryan R.

We have demonstrated the ability to control the microstructure of PETN films deposited using physical vapor deposition by altering the interface between the film and substrate. Evolution of surface morphology, average density, and surface roughness with film thickness were characterized using surface profilometry and scanning electron microscopy. While films on all of the substrates investigated showed a trend toward a lower average density with increasing film thickness, there were significant variations in density, pore size, and surface morphology in films deposited on different substrates.

More Details

Calculating hugoniots for molecular crystals from first principles

Proceedings - 14th International Detonation Symposium, IDS 2010

Wills, Ann E.; Wixom, Ryan R.; Mattsson, Thomas M.

Density Functional Theory (DFT) has over the last few years emerged as an indispensable tool for understanding the behavior of matter under extreme conditions. DFT based molecular dynamics simulations (MD) have for example confirmed experimental findings for shocked deuterium,1 enabled the first experimental evidence for a triple point in carbon above 850 GPa,2 and amended experimental data for constructing a global equation of state (EOS) for water, carrying implications for planetary physics.3 The ability to perform high-fidelity calculations is even more important for cases where experiments are impossible to perform, dangerous, and/or prohibitively expensive. For solid explosives, and other molecular crystals, similar success has been severely hampered by an inability of describing the materials at equilibrium. The binding mechanism of molecular crystals (van der Waals' forces) is not well described within traditional DFT.4 Among widely used exchange-correlation functionals, neither LDA nor PBE balances the strong intra-molecular chemical bonding and the weak inter-molecular attraction, resulting in incorrect equilibrium density, negatively affecting the construction of EOS for undetonated high explosives. We are exploring a way of bypassing this problem by using the new Armiento-Mattsson 2005 (AM05) exchange-correlation functional.5, 6 The AM05 functional is highly accurate for a wide range of solids,4, 7 in particular in compression.8 In addition, AM05 does not include any van der Waals' attraction,4 which can be advantageous compared to other functionals: Correcting for a fictitious van der Waals' like attraction with unknown origin can be harder than correcting for a complete absence of all types of van der Waals' attraction. We will show examples from other materials systems where van der Waals' attraction plays a key role, where this scheme has worked well,9 and discuss preliminary results for molecular crystals and explosives.

More Details

In-situ observation of ErD2 formation during D2 loading via neutron diffraction

Rodriguez, Marko A.; Snow, Clark S.; Wixom, Ryan R.

In an effort to better understand the structural changes occurring during hydrogen loading of erbium target materials, we have performed in situ D{sub 2} loading of erbium metal (powder) at temperature (450 C) with simultaneous neutron diffraction analysis. This experiment tracked the conversion of Er metal to the {alpha} erbium deuteride (solid-solution) phase and then into the {beta} (fluorite) phase. Complete conversion to ErD{sub 2.0} was accomplished at 10 Torr D{sub 2} pressure with deuterium fully occupying the tetrahedral sites in the fluorite lattice.

More Details
Results 76–100 of 113
Results 76–100 of 113