Germanium-silicon separate absorption and multiplication avalanche photodetectors fabricated with low temperature high density plasma chemical vapor deposited germanium
Materials Research Society Symposium Proceedings
In this paper, we evaluate a commercially available high density plasma chemical vapor deposition (HDP-CVD) process to grow low temperature (i.e., Tin-situ & Tepitaxy < ∼460°C) germanium epitaxy for a p+-Ge/p-Si/n+-Si NIR separate absorption and multiplication avalanche photodetectors (SAM-APD). A primary concern for SAM-APDs in this material system is that high fields will not be sustainable across a highly defective Ge/Si interface. We show Ge-Si SAM-APDs that show avalanche multiplication and avalanche breakdown. A dark current of ∼0.1 mA/cm2 and a 3.2×10-4 A/W responsivity at 1310 nm were measured at punch-through. An over 400x photocurrent multiplication was demonstrated at room temperature. These results indicate that high avalanche multiplication gain is achievable in these Ge/Si heterostructures despite the highly defective interface and therefore trap assisted tunneling through the defective Ge/Si interface is not dominant at high fields. © 2007 Materials Research Society.