Publications

Results 226–250 of 286

Search results

Jump to search filters

Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

Computational Materials Science

Lim, Hojun L.; Dingreville, Remi P.; Deibler, Lisa A.; Buchheit, Thomas E.; Battaile, Corbett C.

In this work, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions. Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2-7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress-strain response of polycrystals that can be attributed to the grain-scale microstructural variability. This work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.

More Details

On the interaction of solutes with grain boundaries

Acta Materialia

Dingreville, Remi P.; Berbenni, Stephane

Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi-Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e. type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [0 0 1] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank-Bilby formalism. Overall, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering.

More Details

Review of the synergies between computational modeling and experimental characterization of materials across length scales

Journal of Materials Science

Dingreville, Remi P.; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean H.

With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

More Details

Cavity evolution at grain boundaries as a function of radiation damage and thermal conditions in nanocrystalline nickel

Materials Research Letters

Muntifering, Brittany R.; Blair, Sarah J.; Gong, Cajer; Dunn, Aaron; Dingreville, Remi P.; Qu, Jianmin; Hattar, Khalid M.

Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiationinduced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. These mechanisms suggest limited ability to reduce swelling, despite the stability of the nanostructure.

More Details

Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe

Modelling and Simulation in Materials Science and Engineering

Dingreville, Remi P.; Dunn, Aaron; Capolungo, Laurent

A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline α-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses. With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10-2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. The development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.

More Details

Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components

Dingreville, Remi P.; Hattar, Khalid M.; Bufford, Daniel C.

The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I3TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

More Details
Results 226–250 of 286
Results 226–250 of 286