Controlling the materials chemistry of the solid-state ion conductor NaSICON is key to realizing its potential utility in emerging sodium-based battery technologies. We describe here the influence of excess sodium on phase evolution of sol-gel synthesized NaSICON. Alkoxide-based sol-gel processing was used to produce powders of Na3Zr2PSi2O12 NaSICON with 0-2 atomic % excess sodium. Phase formation and component volatility were studied as a function of temperature. NaSICON synthesis at temperatures between 900-1100C with up to 2% excess sodium significantly reduced the presence of zirconia, sodium phosphate, and sodium silicate secondary phases in fired NaSICON powders. Insights into the role of sodium on the phase chemistry of sol-gel processed NaSICON may inform key improvements in NaSICON development.
As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).