Publications

Results 1–25 of 55

Search results

Jump to search filters

Refining Microstructures in Additively Manufactured Al/Cu Gradients Through TiB2 Inclusions

JOM

Abere, Michael J.; Choi, Hyein; Van Bastian, Levi; Jauregui, Luis J.; Babuska, Tomas F.; Rodriguez, Mark A.; DelRio, Frank W.; Whetten, Shaun R.; Kustas, Andrew K.

The additive manufacture of compositionally graded Al/Cu parts by laser engineered net shaping (LENS) is demonstrated. The use of a blue light build laser enabled deposition on a Cu substrate. The thermal gradient and rapid solidification inherent to selective laser melting enabled mass transport of Cu up to 4 mm from a Cu substrate through a pure Al deposition, providing a means of producing gradients with finer step sizes than the printed layer thicknesses. Divorcing gradient continuity from layer or particle size makes LENS a potentially enabling technology for the manufacture of graded density impactors for ramp compression experiments. Printing graded structures with pure Al, however, was prevented by the growth of Al2Cu3 dendrites and acicular grains amid a matrix of Al2Cu. A combination of adding TiB2 grain refining powder and actively varying print layer composition suppressed the dendritic growth mode and produced an equiaxed microstructure in a compositionally graded part. Material phase was characterized for crystal structure and nanoindentation hardness to enable a discussion of phase evolution in the rapidly solidifying melt pool of a LENS print.

More Details

Theory-guided design of duplex-phase multi-principal-element alloys

Acta Materialia

Singh, Prashant; Johnson, Duane D.; Tiarks, Jordan; White, Emma M.H.; Kustas, Andrew K.; Pegues, Jonathan W.; Jones, Morgan R.; Lim, Hannah; DelRio, Frank W.; Carroll, Jay D.; Ouyang, Gaoyuan; Abere, Michael J.; Naorem, Rameshwari; Huang, Hailong; Riedemann, Trevor M.; Kotula, Paul G.; Anderson, Iver E.; Argibay, Nicolas

Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.

More Details

Normally closed thermally activated irreversible solid state erbium hydrides switches

Micro and Nano Engineering

Abere, Michael J.; Gallegos, Richard J.; Moorman, Matthew W.; Rodriguez, Mark A.; Kotula, Paul G.; Kellogg, Rick A.; Adams, David P.

A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH3/Er2O3 materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.

More Details

Effects of diffusion barriers on reaction wave stability in Co/Al reactive multilayers

Journal of Applied Physics

Abere, Michael J.; Reeves, Robert V.; Sobczak, Catherine E.; Choi, Hyein; Adams, David P.

Bimetallic, reactive multilayers are uniformly structured materials composed of alternating sputter-deposited layers that may be ignited to produce self-propagating mixing and formation reactions. These nanolaminates are most commonly used as rapid-release heat sources. The specific chemical composition at each metal/metal interface determines the rate of mass transport in a mixing and formation reaction. The inclusion of engineered diffusion barriers at each interface will not only inhibit solid-state mixing but also may impede the self-propagating reactions by introducing instabilities to wavefront morphology. This work examines the effect of adding diffusion barriers on the propagation of reaction waves in Co/Al multilayers. The Co/Al system has been shown to exhibit a reaction propagation instability that is dependent on the bilayer thickness, which allows for the occurrence of unstable modes in otherwise stable designs from the inclusion of diffusion barriers. Based on the known stability criteria in the Co/Al multilayer system, the way in which the inclusion of diffusion barriers changes a multilayer's heat of reaction, thermal conductivity, and material mixing mechanisms can be determined. These factors, in aggregate, lead to changes in the wavefront velocity and stability.

More Details

Stability Criteria for Self-Propagating Reaction Waves in Co/Al Multilayers

ACS Applied Materials and Interfaces

Abere, Michael J.; Kittell, David E.; Sobczak, Catherine E.; Adams, David P.

The propagation of self-sustained formation reactions in sputter-deposited Co/Al multilayers is known to exhibit a design-dependent instability. Multilayers having thin bilayers (<55 nm period) exhibit stable propagating waves, whereas those with a larger period react unstably. The specific two-dimensional (2D) instability observed involves the transverse propagation of a band in front of a stalled front commonly referred to as a “spin band.” Previous finite-element studies have shown that these instabilities are thermodynamically driven by the forward conduction of heat away from the flame front. However, the magnitude of that loss is inherently tied to the bilayer design in traditional bimetallic multilayers, which couples any proposed stability criteria to a varying critical diffusion distance. This work utilizes a recently developed class of materials known as “inert-mediated reactive multilayers” to decouple the thermodynamic and kinetic contributions to propagating wave stability by reducing the stored chemical energy density in normally stable bilayer designs. By depositing an inert product phase (B2-CoAl) within the mid-plane of Co and Al reactant layers, spin instabilities arise as a function of both diluted volume and critical diffusion distance. From there, a stability criterion is determined for Co/Al multilayers based on enthalpy loss from the reaction zone, and its physical significance is explored.

More Details

The growth and nanothermite reaction of 2Al/3NiO multilayer thin films

Journal of Applied Physics

Abere, Michael J.; Beason, Matthew T.; Reeves, Robert V.; Rodriguez, Mark A.; Kotula, Paul G.; Sobczak, Catherine E.; Son, Steven F.; Yarrington, Cole D.; Adams, David P.

Nanothermite NiO-Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, Ea = 49 ± 3 kJ/mole). Multilayers having λ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al (Ea = 30 ± 4 kJ/mole). This solid/liquid dissolution Ea is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.

More Details

3D simulations of spinlike flames in Co/Al multilayers with enhanced conduction losses

Combustion and Flame

Kittell, David E.; Abere, Michael J.; Yarrington, Cole Y.; Adams, David P.

Reactive Co/Al multilayers are uniformly structured materials that may be ignited to produce rapid and localized heating. Prior studies varying the bilayer thickness (i.e., sum of two individual layers of Co and Al) have revealed different types of flame morphologies, including: (a) steady/planar, (b) wavy/periodic, and (c) transverse bands, originating in the flame front. These instabilities resemble the “spin waves” first observed in the early studies of solid combustion (i.e., Ti cylinder in a N2 atmosphere), and are likewise thought to be due to the balance of heat released by reaction and heat conduction forward into the unreacted multilayer. However, the multilayer geometry and three-dimensional (3D) edge effects are relatively unexplored. In this work, a new diffusion-limited reaction model for Co/Al multilayers was implemented in large, novel 3D finite element analysis (FEA) simulations, in order to study the origins of these spinlike flames. This reaction model builds upon previous work by introducing three new phase-dependent property models for: (1) the diffusion coefficient, (2) anisotropic thermal conductivity tensor, and (3) bulk heat capacity, as well as one additional model for the bilayer-dependent heat of reaction. These novel 3D simulations are the first to predict both steady and unsteady flames in Co/Al multilayers. Moreover, two unsteady modes of flame propagation are identified, which depend on the enhanced conduction losses with slower flames, as well as flame propagation around notched edges. Future work will consider the generality of the current modeling approach and also seek to define a more generalized set of stability criteria for additional multilayer systems.

More Details

Variable Laser Ignition Pathways in Al/Pt Reactive Multilayers across 10 Decades of Pulse Duration

Journal of Physical Chemistry C

Abere, Michael J.; Yarrington, Cole D.; Kotula, Paul G.; Mcdonald, Joel P.; Adams, David P.

Pulsed laser irradiation is used to investigate the local initiation of rapid, self-propagating formation reactions in Al/Pt multilayers. The single pulse direct laser ignition of these 1.6 μm thick freestanding foils was characterized over 10 decades of pulse duration (10 ms to 150 fs). Finite element, reactive heat transport modeling of the near-threshold conditions has identified three distinct ignition pathways. For milli- to microsecond pulses, ignition occurs following sufficient absorption of laser energy to enable diffusion of Al and Pt between layers such that the heat released from the corresponding exothermic reaction overcomes conductive losses outside the laser-irradiated zone. When pulse duration is decreased into the nanosecond regime, heat is concentrated near the surface such that the Al locally melts, and a portion of the top-most bilayers react initially. The favorable kinetics and additional heat enable ignition. Further reducing pulse duration to hundreds of femtoseconds leads to a third ignition pathway. While much of the energy from these pulses is lost to ablation, the remaining heat beneath the crater can be sufficiently concentrated to drive a transverse self-propagating reaction, wherein the heat released from mixing at each interface occurs under kinetic conditions capable of igniting the subsequent layer.

More Details

Complexion dictated thermal resistance with interface density in reactive metal multilayers

Physical Review B

Saltonstall, Christopher B.; Mcclure, Zachary D.; Abere, Michael J.; Guzman, David; Reeve, Samuel T.; Strachan, Alejandro; Kotula, Paul G.; Adams, David P.; Laros, James H.

Multilayers composed of aluminum (Al) and platinum (Pt) exhibit a nonmonotonic trend in thermal resistance with bilayer thickness as measured by time domain thermoreflectance. The thermal resistance initially increases with reduced bilayer thickness only to reach a maximum and then decrease with further shrinking of the multilayer period. These observations are attributed to the evolving impact of an intermixed amorphous complexion approximately 10 nm in thickness, which forms at each boundary between Al- and Pt-rich layers. Scanning transmission electron microscopy combined with energy dispersive x-ray spectroscopy find that the elemental composition of the complexion varies based on bilayer periodicity as does the fraction of the multilayer composed of this interlayer. These variations in complexion mitigate boundary scattering within the multilayers as shown by electronic transport calculations employing density-functional theory and nonequilibrium Green's functions on amorphous structures obtained via finite temperature molecular dynamics. The lessening of boundary scattering reduces the total resistance to thermal transport leading to the observed nonmonotonic trend thereby highlighting the central role of complexion on thermal transport within reactive metal multilayers.

More Details

Alignment of morphology during high spatial frequency periodic structure formation in GaAs

Journal of Applied Physics

Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben

The interaction between multiple intense ultrashort laser pulses and solids is known to produce a regular nanoscale surface corrugation. A coupled mechanism has been identified that operates in a specific range of fluences in GaAs that exhibits transient loss of the imaginary part of the dielectric function and Χ2, which produces a unique corrugation known as high spatial frequency laser induced periodic surface structures (HSFL). The final structures have 180 nm periods, and their alignment perpendicular to the laser polarization is first observed in an intermediate morphology with correlation distances of 150 ± 40 nm. Quantum molecular dynamics simulations suggest that HSFL self-assembly is initiated when the intense laser field softens the interatomic binding potential, which leads to an ultrafast generation of point defects. The morphological evolution begins as self-interstitial diffusion, driven by stress relaxation, to the surface producing 1-2 nm tall islands. An ab initio calculation of excited electron concentration combined with a Drude-Lorentz model of the excited GaAs dielectric function is used to determine that the conditions for SPP coupling at HSFL formation fluences are both satisfied and occur at wavelengths that are imprinted into the observed surface morphologies. The evolution of these morphologies is explained as the interplay between surface plasmon polaritons that localize defect generation within the structures present on the previous laser exposure and stress relaxation driven defect diffusion.

More Details
Results 1–25 of 55
Results 1–25 of 55