Publications

Results 51–75 of 110

Search results

Jump to search filters

Using a few spectral wavelengths to enhance short circuit current predictions in PV performance models

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Lave, Matthew S.; Hansen, Clifford H.; Ueda, Yuzuru; Hakuta, Keiichiro

Short circuit current (Isc) depends on the effective irradiance incident upon a PV module. Effective irradiance is highly correlated with broadband irradiance, but can vary slightly as the spectral content of the incident light changes. We explore using a few spectral wavelengths with broadband irradiance to predict Isc for ten modules of varying technologies (silicon, CIGS, CdTe). The goal is to identify a few spectral wavelengths that could be easily (and economically) measured to improve PV performance modeling.

More Details

Comparison of solar and wind power generation impact on net load across a utility balancing area

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Lave, Matthew S.; Ellis, Abraham E.

As PV and wind power penetrations in utility balancing areas increase, it is important to understand how they will impact net load. We investigate daily and seasonal trends in solar power generation, wind power generation, and net load. Quantitative metrics are used to compare scenarios with no PV or wind, PV plus wind, only PV, or only wind. PV plus wind scenarios are found to have a larger reduction in maximum net load and smaller ranges between maximum and minimum load than PV only or wind only scenarios, showing that PV plus wind can be a beneficial combination.

More Details

Comparison of high-frequency solar irradiance: Ground measured vs. satellite-derived

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Lave, Matthew S.; Weekley, Andrew

High-frequency solar variability is an important to grid integration studies, but ground measurements are scarce. The high resolution irradiance algorithm (HRIA) has the ability to produce 4-sceond resolution global horizontal irradiance (GHI) samples, at locations across North America. However, the HRIA has not been extensively validated. In this work, we evaluate the HRIA against a database of 10 high-frequency ground-based measurements of irradiance. The evaluation focuses on variability-based metrics. This results in a greater understanding of the errors in the HRIA as well as suggestions for improvement to the HRIA.

More Details

Comparison of high-frequency solar irradiance: Ground measured vs. satellite-derived

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Lave, Matthew S.; Weekley, Andrew

High-frequency solar variability is an important to grid integration studies, but ground measurements are scarce. The high resolution irradiance algorithm (HRIA) has the ability to produce 4-sceond resolution global horizontal irradiance (GHI) samples, at locations across North America. However, the HRIA has not been extensively validated. In this work, we evaluate the HRIA against a database of 10 high-frequency ground-based measurements of irradiance. The evaluation focuses on variability-based metrics. This results in a greater understanding of the errors in the HRIA as well as suggestions for improvement to the HRIA.

More Details

PV ramp rate smoothing using energy storage to mitigate increased voltage regulator tapping

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Reno, Matthew J.; Lave, Matthew S.; Quiroz, Jimmy E.; Broderick, Robert J.

A control algorithm is designed to smooth the variability of PV power output using distributed batteries. The tradeoff between smoothing and battery size is shown. It is also demonstrated that large numbers of highly distributed current, voltage, and irradiance sensors can be utilized to control the distributed storage in a more optimal manner. It is also demonstrated that centralized energy storage control for PV ramp rate smoothing requires very fast communication, typically less than a 15-second update rate. Finally, advanced inverter dynamic reactive current is shown to provide voltage variability smoothing, hence reducing the number of voltage regulator tap changes without energy storage.

More Details

Advanced inverter controls to dispatch distributed PV systems

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Seuss, John; Reno, Matthew J.; Lave, Matthew S.; Broderick, Robert J.; Grijalva, Santiago

The research presented in this paper compares five real-time control strategies for the power output of a large number of distributed PV systems in a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over-voltage violations caused by high penetrations of PV generation. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectives. These objectives include minimizing the total number of voltage violations, minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems. The controls are simulated on the OpenDSS platform using time series load and spatially-distributed irradiance data.

More Details

Performance Comparison of Stion CIGS Modules to Baseline Monocrystalline Modules at the New Mexico Florida and Vermont Regional Test Centers: January 2015-December 2016

Lave, Matthew S.; Burnham, Laurie B.; Stein, Joshua S.

This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.

More Details

Solar Variability Datalogger

Journal of Solar Energy Engineering, Transactions of the ASME

Lave, Matthew S.; Stein, Joshua S.; Smith, Ryan

To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. The low cost and ease of use of the SVD will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.

More Details

Performance Results for the Prism Solar Installation at the New Mexico Regional Test Center: Field Data from February 15 - August 15 2016

Lave, Matthew S.; Stein, Joshua S.; Burnham, Laurie B.

A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).

More Details

Simulation of Distributed PV Power Output in Oahu Hawaii

Lave, Matthew S.

Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.

More Details
Results 51–75 of 110
Results 51–75 of 110