Characterizing Local High-frequency Solar Variability for use in Distribution Studies
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
Ota City, Japan and Alamosa, Colorado present contrasting cases of a small rooftop distributed PV plant versus a large central PV plant. We examine the effect of geographic smoothing on the power output of each plant. 1-second relative maximum ramp rates are found to be reduced 6-10 times for the total plant output versus a single point sensor, though smaller reductions are seen at longer timescales. The relative variability is found to decay exponentially at all timescales as additional houses or inverters are aggregated. The rate of decay depends on both the geographic diversity within the plant and the meteorological conditions (such as cloud speed) on a given day. The Wavelet Variability Model (WVM) takes into account these geographic smoothing effects to produce simulated PV powerplant output by using a point sensor as input. The WVM is tested against Ota City and Alamosa, and the WVM simulation closely matches the distribution of ramp rates of actual power output. © 2012 IEEE.
Abstract not provided.
Abstract not provided.
This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.
Abstract not provided.
Abstract not provided.
Abstract not provided.