The Joint Challenges: Cleaning Up Davinci's Coulomb's and Amontons' Rough Edges
Abstract not provided.
Abstract not provided.
Abstract not provided.
Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.
Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once and can be applied with a variety of boundary conditions. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous frequency and damping ratio from either measured or simulated transient ring-down data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectrum is used to estimate the instantaneous frequencies, damping and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment, and investigates the amplitudefrequency dependence in connection to the undamped nonlinear normal modes. A second example shows the results from experiment ring-down response on a beam with a lap joint, and reveals how the system behaves as energy dissipates.
Abstract not provided.
Abstract not provided.
Two of the central challenges in the mechanical design of components in nuclear systems are the dissipation of energy from external shocks and the localization of energy in energetic materials. This research seeks to address these problems by developing a patterned granular microstructure that can be optimized to direct or impede the transfer of energy carried by stress waves. Such structures require the development of a manufacturing technique that can yield perfectly ordered lattices. Two branches of research are detailed here: the development of a sphere-by-sphere additive manufacturing technique, and the development of a framework for modeling the technique in order to guide future improvements. Proof of concept of the method is demonstrated, and recommendations for future work are made.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.
This paper discusses the results of a study to determine the impact of culture on engineering. The study took place during the 2015 Nonlinear Mechanics and Dynamics Summer Research Institute, a six-week research program sponsored by Sandia National Laboratories and the University of New Mexico consisting of 24 graduate students participating in seven different projects. Twenty-two of the participants and two of the mentors were interviewed to study the effects of cultural background on engineering processes and interactions. The results of this study indicate that cultural differences drive engineering practices.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
Abstract not provided.