Publications

Results 76–100 of 246

Search results

Jump to search filters

HyMARC (Core): SNL Effort

Allendorf, Mark D.

Storage of hydrogen onboard vehicles is one of the critical technologies needed to create hydrogen-fueled transportation systems that can improve energy efficiency, resiliency, and energy independence reduce oil dependency. Stakeholders in developing hydrogen infrastructure (e.g., state governments, automotive original equipment manufacturers, station providers, and industrial gas suppliers) are currently focused on high-pressure storage at 350 bar and 700 bar, in part because no viable solid-phase storage material has emerged. Early-state research to develop foundational understanding of solid-state storage materials, including novel sorbents and highdensity hydrides, is of high importance because of their unique potential to meet all DOE Fuel Cell Technologies Office targets and deliver hydrogen with lower storage pressures and higher onboard densities. However, existing materials suffer from thermodynamic and kinetic limitations that prevent their application as practical H2 storage media. Sandia's overall objectives and responsibilities within HyMARC are to: (1) provide technical leadership to the Consortium at the Director level, as well as through leadership of Task 1 (Thermodynamics), Task 3 (Gas Surface Interactions), and Task 5 (Additives); (2) provide gas sorption and other property data required to develop and validate thermodynamic models of sorbents and metal hydride storage materials, including the effects of 350 bar and 700 bar H2 delivery pressures, serving as a resource for the consortium; (3) identify the structure, composition, and reactivity of gas surface and solid-solid hydride surfaces contributing to ratelimiting desorption and uptake; (4) provide metal hydrides and Metal-Organic Framework (MOF) sorbents in a variety of formats tailored for specific consortium tasks; (5) develop sample preparation methods and experimental protocols to enable facile use of the new characterization probes employed by the Consortium; (6) apply SNL multiscale codes to discover diffusion pathways and mechanisms of storage materials; and (7) elucidate the role of additives in promoting hydrogen storage reactions.

More Details

Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications

Advanced Materials

Burtch, Nicholas C.; Heinen, Jurn; Bennett, Thomas D.; Dubbeldam, David; Allendorf, Mark D.

Some of the most remarkable recent developments in metal–organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic–organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studied gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure–property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.

More Details

Hybrid Polymer/Metal-Organic Framework Films for Colorimetric Water Sensing over a Wide Concentration Range

ACS Applied Materials and Interfaces

Allendorf, Mark D.; Ullman, Andrew M.; Jones, Christopher G.; Doty, Fred P.; Stavila, Vitalie S.; Talin, A.A.

Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach. HKUST-1 thin films are spin-coated onto rigid or flexible substrates and are shown to quantitatively determine the RH within the range of 0.1-5% RH by either visual observation or a straightforward optical reflectivity measurement. At high humidity (>10% RH), a polymer/MOF bilayer is used to slow the transport of H2O to the MOF film, enabling quantitative determination of RH using time as the distinguishing metric. Finally, the sensor is combined with an inexpensive light-emitting diode light source and Si photodiode detector to demonstrate a quantitative humidity detector for low humidity environments.

More Details

Molecular dynamics studies of fundamental bulk properties of palladium hydrides for hydrogen storage

Journal of Applied Physics

Zhou, Xiaowang Z.; Heo, T.W.; Wood, B.C.; Kang, S.; Stavila, Vitalie S.; Allendorf, Mark D.

Solid-state hydrogen storage materials undergo complex phase transformations whose behavior are collectively determined by thermodynamic (e.g., Gibbs free energy), mechanical (e.g., lattice and elastic constants), and mass transport (e.g., diffusivity) properties. These properties depend on the reaction conditions and evolve continuously during (de)hydrogenation. Thus, they are difficult to measure in experiments. Because of this, past progress to improve solid-state hydrogen storage materials has been prolonged. Using PdHx as a representative example for interstitial metal hydride, we have recently applied molecular dynamics simulations to quantify hydrogen diffusion in the entire reaction space of temperature and composition. Here, we have further applied molecular dynamics simulations to obtain well-converged expressions for lattice constants, Gibbs free energies, and elastic constants of PdHx at various stages of the reaction. Our studies confirm significant dependence of elastic constants on temperature and composition. Specifically, a new dynamic effect of hydrogen diffusion on elastic constants is discovered and discussed.

More Details

Efficient conversion of lignin into a water-soluble polymer by a chelator-mediated Fenton reaction: optimization of H 2 O 2 use and performance as a dispersant

Green Chemistry

Kent, Michael S.; Zeng, Jijiao; Rader, Nadeya; Avina, Isaac C.; Simoes, Casey T.; Brenden, Christopher K.; Busse, Michael B.; Watt, John D.; Giron, Nicholas H.; Allendorf, Mark D.; Simmons, Blake A.; Bell, Nelson S.; Sale, Kenneth L.

Transforming lignin into a water-soluble polymer.

More Details

Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

Journal of Physical Chemistry C

Allendorf, Mark D.; Foster, Michael E.; Spoerke, Erik D.; Domenico, Janna; Sohlberg, Karl

The efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye-substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on the surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal-organic framework (MOF) thin-film growth on various metal-oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.

More Details

Anomalous H2 Desorption Rate of NaAlH4 Confined in Nitrogen-Doped Nanoporous Carbon Frameworks

Chemistry of Materials

Carr, Christopher L.; Jayawardana, Waruni; Zou, Hongyang; White, James L.; El Gabaly Marquez, Farid E.; Conradi, Mark S.; Stavila, Vitalie S.; Allendorf, Mark D.; Majzoub, Eric H.

Confining NaAlH4 in nanoporous carbon scaffolds is known to alter the sorption kinetics and/or pathways of the characteristic bulk hydride reactions through interaction with the framework at the interface, increased specific surface area of the resulting nanoparticles, decreased hydrogen diffusion distances, and prevention of phase segregation. Although the nanosize effects have been well studied, the influence of the carbon scaffold surface chemistry remains unclear. Here we compare the hydrogen sorption characteristics of NaAlH4 confined by melt infiltration in nitrogen-doped/undoped ordered nanoporous carbon of two different geometries. 23Na and 27Al MAS NMR, N2 sorption, and PXRD verify NaAlH4 was successfully confined and remains intact in the carbon nanopores after infiltration. Both the N-doped/undoped nanoconfined systems demonstrate improved reversibility in relation to the bulk hydride during hydrogen desorption/absorption cycling. Isothermal kinetic measurements indicate a lowering of the activation energy for H2 desorption by as much as 70 kJ/mol in N-doped frameworks, far larger than the reduction in carbon-only frameworks. Most interestingly, this dramatic lowering of the activation energy is accompanied by an unexpected and anomalously low NaAlH4 desorption rate in the N-doped frameworks. This suggests that the framework surface chemistry plays an important role in the desorption process and that the rate limiting step for desorption may be associated with interactions of the hydride and host surface. Our results indicate that functionalization of carbon scaffold surface chemistry with heteroatoms provides a powerful method of altering the characteristic hydrogen sorption properties of confined metal hydride systems. This technique may prove beneficial in the path to a viable metal hydride-based hydrogen storage system.

More Details

Temperature- and composition-dependent hydrogen diffusivity in palladium from statistically-averaged molecular dynamics

Scripta Materialia

Zhou, Xiaowang Z.; Stavila, Vitalie S.; Allendorf, Mark D.; Heo, Tae W.; Wood, Brandon C.; Kang, Shinyoung

Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, at high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.

More Details

Phase Evolution of Complex Metal Hydrides During De/Rehydrogenation

White, James L.; Ohigashi, Takuji; Ray, Keith G.; Liu, Yi-Sheng; Stavila, Vitalie S.; Allendorf, Mark D.; Guo, Jinghua

Lightweight complex metal hydrides are of interest for use as energy-dense on-board vehicular hydrogen stores. One material of particular interest, magnesium borohydride (Mg(BH4)2), has very high hydrogen capacity, at 14.9 wt.% H, but suffers from slow kinetics and the need for extreme conditions for both dehydrogenation and rehydrogenation from magnesium diboride (MgB2). In order to establish methods to improve the kinetic properties of this system, a greater understanding of the nucleation and growth of various solid phases is essential.

More Details

Unraveling the Semiconducting/Metallic Discrepancy in Ni3(HITP)2

Journal of Physical Chemistry Letters

Foster, Michael E.; Allendorf, Mark D.

Here, Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 is a π-stacked layered metal–organic framework material with extended π-conjugation that is analogous to graphene. Published experimental results indicate that the material is semiconducting, but all theoretical studies to date predict the bulk material to be metallic. Given that previous experimental work was carried out on specimens containing complex nanocrystalline microstructures and the tendency for internal interfaces to introduce transport barriers, we apply DFT to investigate the influence of internal interface defects on the electronic structure of Ni3(HITP)2. The results show that interface defects can introduce a transport barrier by breaking the π-conjugation and/or decreasing the dispersion of the electronic bands near the Fermi level. We demonstrate that the presence of defects can open a small gap, in the range of 15–200 meV, which is consistent with the experimentally inferred hopping barrier.

More Details

Hydrogenation properties of lithium and sodium hydride- closo -borate, [B10H10]2- and [B12H12]2-, composites

Physical Chemistry Chemical Physics

Jensen, Steffen R.H.; Paskevicius, Mark; Hansen, Bjarne R.S.; Jakobsen, Anders S.; Moller, Kasper T.; White, James L.; Allendorf, Mark D.; Stavila, Vitalie S.; Skibsted, Jorgen; Jensen, Torben R.

The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1:0.63 and 1:0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B:H ratio close to 1:1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage.

More Details

Thermally activated delayed fluorescence of a Zr-based metal–organic framework

ChemComm

Mieno, H.; Kabe, R.; Allendorf, Mark D.; Adachi, C.

Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.

More Details

Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites

Allendorf, Mark D.

Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

More Details

Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

Nano Letters

Talin, A.A.; Allendorf, Mark D.; Stavila, Vitalie S.

The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.

More Details
Results 76–100 of 246
Results 76–100 of 246