Development of a Universal Canister for Disposal of HLW in a Deep Borehole
Abstract not provided.
Abstract not provided.
Abstract not provided.
An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.
The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.
The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.
Abstract not provided.
Abstract not provided.
The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used for handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.
Abstract not provided.
Abstract not provided.
The current management system in the United States for commercial spent nuclear fuel does not emphasize integration among storage, transportation, and disposal. Unless a path can be implemented that addresses the long-term needs for integration, the United States could end up leaving substantial quantities of stranded commercial spent nuclear fuel stored at decommissioned reactor sites in an increasingly wide variety of containers. This lack of integration does not cause safety issues, but may delay transporting the spent fuel and complicate options for permanent disposal. The large containers now in use for dry storage remain at high temperatures for decades, thereby delaying transportation from decommissioned reactors. The large containers also have no easy path to disposal unless (1) disposal is further delayed (up to 150 years or more for some mined repository concepts); (2) the contents are repackaged into smaller, cooler packages; or (3) the high temperatures are used as de facto site-selection and design criteria for a repository. Implementing consolidated interim storage could address many issues that exist because of this lack of integration. A consolidated interim storage facility that includes appropriate capabilities can allow existing disparate parts to integrate as a system. Previous agencies and commissions have noted this theme before as a way to provide flexibility in the waste management system. This report uses the rationale for such an approach as a framework to discuss the complexities of reconfiguring the waste management system to include consolidated storage. However, concerns that increased storage capacity will reduce the national urgency for a repository are unavoidable, and continued effort will be necessary in public dialogues on the societal aspects of moving commercial spent nuclear fuel into consolidated interim storage. A single optimal solution for integrating current storage and planned transportation with disposal is unlikely. Rather, efforts to integrate various phases of spent fuel management should begin promptly and continue throughout the remaining life of the current fuel cycle. These efforts will need to adapt continuously to evolving circumstances.
This study has evaluated the technical feasibility of direct disposal in a geologic repository, of commercial spent nuclear fuel (SNF) in dual-purpose canisters (DPCs) of existing designs. The authors, representing several national laboratories, considered waste isolation safety, engineering feasibility, thermal management, and postclosure criticality control. The 3-year study concludes that direct disposal is technically feasible for most DPCs, depending on the repository host geology. Postclosure criticality control, and thermal management strategies that allow permanent disposal within 150 years, are two of the most challenging aspects. This document summarizes technical results from a series of previous reports, and describes additional studies that can be done especially if site-specific information becomes available from one or more prospective repository sites.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015
The theme of the paper is that consolidated interim storage can provide an important integrating function between storage and disposal in the United States. Given the historical tension between consolidated interim storage and disposal in the United States, this paper articulates a rationale for consolidated interim storage. However, the paper concludes more effort could be expended on developing the societal aspects of the rationale, in addition to the technical and operational aspects of using consolidated interim storage.
15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015
Options for disposal of the spent nuclear fuel and high level radioactive waste that are projected to exist in the United States in 2048 were studied. The options included four different disposal concepts: mined repositories in salt, clay/shale rocks, and crystalline rocks; and deep boreholes in crystalline rocks. Some of the results of this study are that all waste forms, with the exception of untreated sodium-bonded spent nuclear fuel, can be disposed of in any of the mined disposal concepts, although with varying degrees of confidence; salt allows for more flexibility in managing high-heat waste in mined repositories than other media; small waste forms are potentially attractive candidates for deep borehole disposal; and disposal of commercial SNF in existing dual-purpose canisters is potentially feasible but could pose significant challenges both in repository operations and in demonstrating confidence in long-term performance. Questions addressed by this study include: is a " 'one-size-fits-all ' repository a good strategic option for disposal?" and "do some disposal concepts perform significantly better with or without specific waste types or forms? " The study provides the bases for answering these questions by evaluating potential impacts of waste forms on the feasibility and performance of representative generic concepts for geologic disposal.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.