Publications

Results 51–100 of 153

Search results

Jump to search filters

A heuristic approach to value-driven evaluation of visualizations

IEEE Transactions on Visualization and Computer Graphics

Wall, Emily; Agnihotri, Meeshu; Matzen, Laura E.; Divis, Kristin M.; Haass, Michael J.; Endert, Alex; Stasko, John

Recently, an approach for determining the value of a visualization was proposed, one moving beyond simple measurements of task accuracy and speed. The value equation contains components for the time savings a visualization provides, the insights and insightful questions it spurs, the overall essence of the data it conveys, and the confidence about the data and its domain it inspires. This articulation of value is purely descriptive, however, providing no actionable method of assessing a visualization's value. In this work, we create a heuristic-based evaluation methodology to accompany the value equation for assessing interactive visualizations. We refer to the methodology colloquially as ICE-T, based on an anagram of the four value components. Our approach breaks the four components down into guidelines, each of which is made up of a small set of low-level heuristics. Evaluators who have knowledge of visualization design principles then assess the visualization with respect to the heuristics. We conducted an initial trial of the methodology on three interactive visualizations of the same data set, each evaluated by 15 visualization experts. We found that the methodology showed promise, obtaining consistent ratings across the three visualizations and mirroring judgments of the utility of the visualizations by instructors of the course in which they were developed.

More Details

Effects of Note-Taking Method on Knowledge Transfer in Inspection Tasks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Stites, Mallory C.; Matzen, Laura E.; Smartt, Heidi A.; Gastelum, Zoe N.

International nuclear safeguards inspectors visit nuclear facilities to assess their compliance with international nonproliferation agreements. Inspectors note whether anything unusual is happening in the facility that might indicate the diversion or misuse of nuclear materials, or anything that changed since the last inspection. They must complete inspections under restrictions imposed by their hosts, regarding both their use of technology or equipment and time allotted. Moreover, because inspections are sometimes completed by different teams months apart, it is crucial that their notes accurately facilitate change detection across a delay. The current study addressed these issues by investigating how note-taking methods (e.g., digital camera, hand-written notes, or their combination) impacted memory in a delayed recall test of a complex visual array. Participants studied four arrays of abstract shapes and industrial objects using a different note-taking method for each, then returned 48–72Â h later to complete a memory test using their notes to identify objects changed (e.g., location, material, orientation). Accuracy was highest for both conditions using a camera, followed by hand-written notes alone, and all were better than having no aid. Although the camera-only condition benefitted study times, this benefit was not observed at test, suggesting drawbacks to using just a camera to aid recall. Change type interacted with note-taking method; although certain changes were overall more difficult, the note-taking method used helped mitigate these deficits in performance. Finally, elaborative hand-written notes produced better performance than simple ones, suggesting strategies for individual note-takers to maximize their efficacy in the absence of a digital aid.

More Details

The Impact of Information Presentation on Visual Inspection Performance in the International Nuclear Safeguards Domain

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Matzen, Laura E.; Stites, Mallory C.; Smartt, Heidi A.; Gastelum, Zoe N.

International nuclear safeguards inspectors are tasked with verifying that nuclear materials in facilities around the world are not misused or diverted from peaceful purposes. They must conduct detailed inspections in complex, information-rich environments, but there has been relatively little research into the cognitive aspects of their jobs. We posit that the speed and accuracy of the inspectors can be supported and improved by designing the materials they take into the field such that the information is optimized to meet their cognitive needs. Many in-field inspection activities involve comparing inventory or shipping records to other records or to physical items inside of a nuclear facility. The organization and presentation of the records that the inspectors bring into the field with them could have a substantial impact on the ease or difficulty of these comparison tasks. In this paper, we present a series of mock inspection activities in which we manipulated the formatting of the inspectors’ records. We used behavioral and eye tracking metrics to assess the impact of the different types of formatting on the participants’ performance on the inspection tasks. The results of these experiments show that matching the presentation of the records to the cognitive demands of the task led to substantially faster task completion.

More Details

The Impact of Information Presentation on Visual Inspection Performance in the International Nuclear Safeguards Domain

Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics

Matzen, Laura E.; Stites, Mallory C.; Smartt, Heidi A.; Gastelum, Zoe N.

International nuclear safeguards inspectors are tasked with verifying that nuclear materials in facilities around the world are not misused or diverted from peaceful purposes. They must conduct detailed inspections in complex, information-rich environments, but there has been relatively little research into the cognitive aspects of their jobs. We posit that the speed and accuracy of the inspectors can be supported and improved by designing the materials they take into the field such that the information is optimized to meet their cognitive needs. Many in-field inspection activities involve comparing inventory or shipping records to other records or to physical items inside of a nuclear facility. The organization and presentation of the records that the inspectors bring into the field with them could have a substantial impact on the ease or difficulty of these comparison tasks. In this paper, we present a series of mock inspection activities in which we manipulated the formatting of the inspectors’ records. We used behavioral and eye tracking metrics to assess the impact of the different types of formatting on the participants’ performance on the inspection tasks. The results of these experiments show that matching the presentation of the records to the cognitive demands of the task led to substantially faster task completion.

More Details

Creating an Interprocedural Analyst-Oriented Data Flow Representation for Binary Analysts (CIAO)

Leger, Michelle A.; Butler, Karin; Bueno, Denis; Crepeau, Matthew; Cuellar, Christopher R.; Godwin, Alex; Haass, Michael J.; Loffredo, Timothy J.; Mangal, Ravi; Matzen, Laura E.; Nguyen, Vivian; Orso, Alessandro; Reedy, Geoffrey; Stasko, John T.; Stites, Mallory C.; Tuminaro, Julian; Wilson, Andrew T.

National security missions require understanding third-party software binaries, a key element of which is reasoning about how data flows through a program. However, vulnerability analysts protecting software lack adequate tools for understanding data flow in binaries. To reduce the human time burden for these analysts, we used human factors methods in a rolling discovery process to derive user-centric visual representation requirements. We encountered three main challenges: analysis projects span weeks, analysis goals significantly affect approaches and required knowledge, and analyst tools, techniques, conventions, and prioritization are based on personal preference. To address these challenges, we initially focused our human factors methods on an attack surface characterization task. We generalized our results using a two-stage modified sorting task, creating requirements for a data flow visualization. We implemented these requirements partially in manual static visualizations, which we informally evaluated, and partially in automatically generated interactive visualizations, which have yet to be integrated into workflows for evaluation. Our observations and results indicate that 1) this data flow visualization has the potential to enable novel code navigation, information presentation, and information sharing, and 2) it is an excellent time to pursue research applying human factors methods to binary analysis workflows.

More Details

Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

IEEE Transactions on Visualization and Computer Graphics

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; Wang, Zhiyuan; Wilson, Andrew T.

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

More Details

Transcranial direct current stimulation of dorsolateral prefrontal cortex during encoding improves recall but not recognition memory

Neuropsychologia

Trumbo, Michael C.S.; Leshikar, Eric D.; Leach, Ryan C.; Mccurdy, Matthew P.; Sklenar, Allison M.; Frankenstein, Andrea N.; Matzen, Laura E.

Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation led to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Overall, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.

More Details

Feature Selection and Inferential Procedures for Video Data [Slides]

Chen, Maximillian G.; Bapst, Aleksander B.; Busche, Kirk R.; Do, Minh N.; Matzen, Laura E.; Mcnamara, Laura A.; Yeh, Raymond A.

With the rise of electronic and high-dimensional data, new and innovative feature detection and statistical methods are required to perform accurate and meaningful statistical analysis of these datasets that provide unique statistical challenges. In the area of feature detection, much of the recent feature detection research in the computer vision community has focused on deep learning methods, which require large amounts of labeled training data. However, in many application areas, training data is very limited and often difficult to obtain. We develop methods for fast, unsupervised, precise feature detection for video data based on optical flows, edge detection, and clustering methods. We also use pretrained neural networks and interpretable linear models to extract features using very limited training data. In the area of statistics, while high-dimensional data analysis has been a main focus of recent statistical methodological research, much focus has been on populations of high-dimensional vectors, rather than populations of high-dimensional tensors, which are three-dimensional arrays that can be used to model dependent images, such as images taken of the same person or ripped video frames. Our feature detection method is a non-model-based method that fusses information from dense optical flow, raw image pixels, and frame differences to generate detections. Our hypothesis testing methods are based on the assumption that dependent images are concatenated into a tensor that follows a tensor normal distribution, and from this assumption, we derive likelihood-ratio, score, and regression-based tests for one- and multiple-sample testing problems. Our methods will be illustrated on simulated and real datasets. We conclude this report with comments on the relationship between feature detection and hypothesis testing methods.

More Details

Modeling human comprehension of data visualizations

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; Wilson, Andrew T.

This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need for cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.

More Details

Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

IEEE Transactions on Visualization and Computer Graphics

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; Wang, Zhiyuan; Wilson, Andrew T.

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

More Details

Brain Science and International Nuclear Safeguards: Implications from Cognitive Science and Human Factors Research on the Provision and Use of Safeguards-Relevant Information in the Field

ESARDA Bulletin

Gastelum, Zoe N.; Matzen, Laura E.; Smartt, Heidi A.; Horak, Karl E.; Moyer, Eric M.; St Pierre, M.E.

Today’s international nuclear safeguards inspectors have access to an increasing volume of supplemental information about the facilities under their purview, including commercial satellite imagery, nuclear trade data, open source information, and results from previous safeguards activities. In addition to completing traditional in-field safeguards activities, inspectors are now responsible for being able to act upon this growing corpus of supplemental safeguards-relevant data and for maintaining situational awareness of unusual activities taking place in their environment. However, cognitive science research suggests that maintaining too much information can be detrimental to a user’s understanding, and externalizing information (for example, to a mobile device) to reduce cognitive burden can decrease cognitive function related to memory, navigation, and attention. Given this dichotomy, how can international nuclear safeguards inspectors better synthesize information to enhance situational awareness, decision making, and performance in the field? This paper examines literature from the fields of cognitive science and human factors in the areas of wayfinding, situational awareness, equipment and technical assistance, and knowledge transfer, and describes the implications for the provision of, and interaction with, safeguards-relevant information for international nuclear safeguards inspectors working in the field.

More Details

Patterns of attention: How data visualizations are read

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; Stites, Mallory C.

Data visualizations are used to communicate information to people in a wide variety of contexts, but few tools are available to help visualization designers evaluate the effectiveness of their designs. Visual saliency maps that predict which regions of an image are likely to draw the viewer’s attention could be a useful evaluation tool, but existing models of visual saliency often make poor predictions for abstract data visualizations. These models do not take into account the importance of features like text in visualizations, which may lead to inaccurate saliency maps. In this paper we use data from two eye tracking experiments to investigate attention to text in data visualizations. The data sets were collected under two different task conditions: a memory task and a free viewing task. Across both tasks, the text elements in the visualizations consistently drew attention, especially during early stages of viewing. These findings highlight the need to incorporate additional features into saliency models that will be applied to visualizations.

More Details

Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer

Neuropsychologia

Trumbo, Michael C.S.; Matzen, Laura E.; Coffman, Brian A.; Hunter, Michael A.; Jones, Aaron P.; Robinson, Charles S.H.; Clark, Vincent P.

Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.

More Details

Practice makes imperfect: Working memory training can harm recognition memory performance

Memory and Cognition

Matzen, Laura E.; Trumbo, Michael C.S.; Haass, Michael J.; Silva, Austin R.; Adams, Susan S.; Bunting, Michael F.; O'Rourke, Polly

There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved on the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. These results indicate that WM training may have unintended consequences for other types of memory performance.

More Details

Information theoretic measures for visual analytics: The silver ticket?

ACM International Conference Proceeding Series

Mcnamara, Laura A.; Bauer, Travis L.; Haass, Michael J.; Matzen, Laura E.

In this paper, we argue that information theoretic measures may provide a robust, broadly applicable, repeatable metric to assess how a system enables people to reduce high-dimensional data into topically relevant subsets of information. Explosive growth in electronic data necessitates the development of systems that balance automation with human cognitive engagement to facilitate pattern discovery, analysis and characterization, variously described as "cognitive augmentation" or "insight generation." However, operationalizing the concept of insight in any measurable way remains a difficult challenge for visualization researchers. The "golden ticket" of insight evaluation would be a precise, generalizable, repeatable, and ecologically valid metric that indicates the relative utility of a system in heightening cognitive performance or facilitating insights. Unfortunately, the golden ticket does not yet exist. In its place, we are exploring information theoretic measures derived from Shannon's ideas about information and entropy as a starting point for precise, repeatable, and generalizable approaches for evaluating analytic tools. We are specifically concerned with needle-in-haystack workflows that require interactive search, classification, and reduction of very large heterogeneous datasets into manageable, task-relevant subsets of information. We assert that systems aimed at facilitating pattern discovery, characterization and analysis - i.e., "insight" - must afford an efficient means of sorting the needles from the chaff; and simple compressibility measures provide a way of tracking changes in information content as people shape meaning from data.

More Details

Transcranial stimulation over the left inferior frontal gyrus increases false alarms in an associative memory task in older adults

Healthy Aging Research

Leach, Ryan C.; Mccurdy, Matthew P.; Trumbo, Michael C.S.; Matzen, Laura E.; Leshikar, Eric D.

Here, transcranial direct current stimulation (tDCS) is a potent ial tool for alleviating various forms of cognitive decline, including memory loss, in older adults. However, past effects of tDCS on cognitive ability have been mixed. One important potential moderator of tDCS effects is the baseline level of cognitive performance. We tested the effects of tDCS on face-name associative memory in older adults, who suffer from performance deficits in this task relative to younger adults. Stimulation was applied to the left inferior prefrontal cortex during encoding of face-name pairs, and memory was assessed with both a recognition and recall task. As a result, face–name memory performance was decreased with the use of tDCS. This result was driven by increased false alarms when recognizing rearranged face–name pairs.

More Details
Results 51–100 of 153
Results 51–100 of 153