Publications

Results 51–75 of 194

Search results

Jump to search filters

First principles model of electric cable braid penetration with dielectrics

Progress In Electromagnetics Research C

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Basilio, Lorena I.

In this paper, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e., the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius to half spacing ratio of 0.5–0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.

More Details

A first principles, multipole-based cable braid electromagnetic penetration model

2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2017

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Johnson, William A.; Coats, Rebecca S.; Basilio, Lorena I.

We report in this paper a first principles, multipole-based cable braid electromagnetic penetration model. We apply this formulation to the case of a one-dimensional array of wires, which can be modeled analytically via a multipole-conformal mapping expansion for the wire charges and extension by means of Laplace solutions in bipolar coordinates. We analyze both electric and magnetic penetrations and compare results from the first principles cable braid electromagnetic penetration model to those obtained using the multipole-conformal mapping expansion method. We find results in very good agreement when using up to the octopole moment (for the first principles model), covering a dynamic range of radius-to-half-spacing ratio up to 0.6. These results give us the confidence that our first principles model works within the geometric characteristics of many commercial cables.

More Details

Realistic full wave modeling of focal plane array pixels

Applied Computational Electromagnetics Society Journal

Campione, Salvatore; Warne, Larry K.; Jorgenson, Roy E.; Davids, Paul D.; Peters, D.W.

In this paper we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

More Details

Nanoantenna-enhanced absorption in thin infrared detector layers

Proceedings of the 2017 19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017

Sinclair, Michael B.; Warne, Larry K.; Campione, Salvatore; Goldflam, Michael G.; Peters, D.W.

The noise performance of infrared detectors can be improved through utilization of thinner detector layers which reduces thermal and generation-recombination noise currents. However, some infrared detector materials suffer from weak optical absorption and thinning the detector layer can lead to incomplete absorption of the incoming infrared photons which reduces detector quantum efficiency. Here, we show how subwavelength metallic nanoantennas can be used to boost the efficiency of photon absorption for thin detector layers, thereby achieving overall enhanced detector performance.

More Details

Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh S.; Basilio, Lorena I.

In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a technique to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank

More Details

Dipole Approximation to Predict the Resonances of Dimers Composed of Dielectric Resonators for Directional Emission: Dielectric Dimers Dipole Approximation

Radio Science

Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problem at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.

More Details

ATLOG Modeling of Aerial Cable from the November 2016 HERMES Electromagnetic Pulse Experiments

Campione, Salvatore; Warne, Larry K.; Yee, Benjamin T.; Cartwright, Keith C.; Basilio, Lorena I.

This report details the comparison of ATLOG modeling results for the response of a finite-length dissipative aerial conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG time-domain method based on transmission line theory. Good agreement is observed between simulations and experiments. Intentionally Left Blank

More Details

Comparison of ATLOG and Xyce for Bell Labs Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Ground Plane

Campione, Salvatore; Warne, Larry K.; Schiek, Richard S.; Basilio, Lorena I.

This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank

More Details

Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Time Domain

Campione, Salvatore; Warne, Larry K.; Schiek, Richard S.; Basilio, Lorena I.

This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a time-domain method based on transmission line theory that allows accounting for time-varying air conductivities. We implemented such method in a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared the frequency-domain version of ATLOG previously developed and to the circuit simulator Xyce in some instances. Intentionally Left Blank

More Details

Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Frequency Domain

Campione, Salvatore; Warne, Larry K.; Schiek, Richard S.; Basilio, Lorena I.

This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a frequency-domain method based on transmission line theory and implemented it in a code we call ATLOG - Analytic Transmission Line Over Ground. Select results are compared to ones computed using the circuit simulator Xyce. Intentionally Left Blank

More Details
Results 51–75 of 194
Results 51–75 of 194