Z-PetaWatt : motivations and current status
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have improved deformable mirror approach to allow good parabolic deformation for efficient thermal lens compensation. Our design uses an annulus to push onto the back surface of a flat mirror substrate, simply supported at the outer edge, thereby creating a parabolic deformation within the encircled area. We built an assembly using a 25.4 mm diameter, 1 mm thick mirror with a wedge of less than 10 arc seconds that was deformed with a 12 mm diameter annulus at the back of the mirror. Using a Shack-Hartman wavefront sensor we performed careful measurements to characterize the performance of the mirrors.
Abstract not provided.
In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.