Publications

Results 26–50 of 256

Search results

Jump to search filters

CB10412: Bulk CWA Destruction

Kinnan, Mark K.; Burton, Patrick D.; Greathouse, Jeffery A.; Priest, Chad; Leverant, Calen J.; Fisher, Thomas J.; Rempe, Susan R.; Alam, Todd M.; Mcgarvey, David J.; Creasy, Bill

The objective of this project was to eliminate and/or render bulk agent unusable by a threat entity via neutralization and/or polymerization of the bulk agent using minimal quantities of additives. We proposed the in situ neutralization and polymerization of bulk chemical agents (CAs) by performing reactions in the existing CA storage container via wet chemical approaches using minimal quantities of chemical based materials. This approach does not require sophisticated equipment, fuel to power generators, electricity to power equipment, or large quantities of decontaminating materials. By utilizing the CA storage container as the batch reactor, the amount of logistical resources can be significantly reduced. Fewer personnel are required since no sophisticated equipment needs to be set up, configured, or operated. Employing the CA storage container as the batch reactor enables the capability to add materials to multiple containers in a short period of time as opposed to processing one container at a time for typical batch reactor approaches. In scenarios where a quick response is required, the material can be added to all the CA containers and left to react on its own without intervention. Any attempt to filter the CA plus material solution will increase the rate of reaction due to increased agitation of the solution.

More Details

Advances in Clayff Molecular Simulation of Layered and Nanoporous Materials and Their Aqueous Interfaces

Journal of Physical Chemistry C

Cygan, Randall T.; Greathouse, Jeffery A.; Kalinichev, Andrey G.

As a general-purpose force field for molecular simulations of layered materials and their fluid interfaces, Clayff continues to see broad usage in atomistic computational modeling for numerous geoscience and materials science applications due to its (1) success in predicting properties of bulk nanoporous materials and their interfaces, (2) transferability to a range of layered and nanoporous materials, and (3) simple functional form which facilitates incorporation into a variety of simulation codes. Here, we review applications of Clayff to model bulk phases and interfaces not included in the original parameter set and recent modifications for modeling surface terminations such as hydroxylated nanoparticle edges. We conclude with a discussion of expectations for future developments.

More Details

Effects of nanoconfinement and surface charge on iron adsorption on mesoporous silica

Environmental Science: Nano

Greathouse, Jeffery A.; Duncan, Tyler J.; Ilgen, Anastasia G.; Harvey, Jacob H.; Criscenti, Louise C.; Knight, Andrew W.

We present a combined molecular dynamics (MD) simulation and X-ray absorption fine structure (XAFS) spectroscopic investigation of aqueous iron adsorption on nanoconfined amorphous silica surfaces. The simulation models examine the effects of pore size, pH (surface charge), iron valency, and counter-ion (chloride or hydroxide). The simulation methods were validated by comparing the coordination environment of adsorbed iron with coordination numbers and bond lengths derived from XAFS. In the MD models, nanoconfinement effects on local iron coordination were investigated by comparing results for unconfined silica surfaces and in confined domains within 2 nm, 4 nm, and 8 nm pores. Experimentally, coordination environments of iron adsorbed onto mesoporous silica with 4 nm and 8 nm pores at pH 7.5 were investigated. The effect of pH in the MD models was included by simulating Fe(ii) adsorption onto negatively charged SiO2surfaces and Fe(iii) adsorption on neutral surfaces. The simulation results show that iron adsorption depends significantly on silica surface charge, as expected based on electrostatic interactions. Adsorption on a negatively charged surface is an order of magnitude greater than on the neutral surface, and simulated surface coverages are consistent with experimental results. Pore size effects from the MD simulations were most notable in the adsorption of Fe(ii) at deprotonated surface sites (SiO−), but adsorption trends varied with concentration and aqueous Fe speciation. The coordination environment of adsorbed iron varied significantly with the type of anion. Considerable ion pairing with hydroxide anions led to the formation of oligomeric surface complexes and aqueous species, resulting in larger iron hydroxide clusters at higher surface loadings.

More Details

Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores

Journal of Chemical Physics

Senanayake, Hasini S.; Greathouse, Jeffery A.; Ilgen, Anastasia G.; Thompson, Ward H.

Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approachis a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined inhydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on thesilica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. Thisappears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated withtheweaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.

More Details

Partitioning of Complex Fluids at Mineral Surfaces

Greathouse, Jeffery A.; Long, Daniel M.; Xu, Guangping X.; Yoon, Hongkyu Y.; Kim, Iltai; Jungjohann, Katherine L.

This report summarizes the results obtained during the LDRD project entitled "Partitioning of Complex Fluids at Mineral Interfaces." This research addressed fundamental aspects of such interfaces, which are relevant to energy-water applications in the subsurface, including fossil energy extraction and carbon sequestration. This project directly addresses the problem of selectivity of complex fluid components at mineral-fluid interfaces, where complex fluids are defined as a mixture of hydrophobic and hydrophilic components: e.g., water, aqueous ions, polar/nonpolar organic compounds. Specifically, this project investigates how adsorption selectivity varies with surface properties and fluid composition. Both experimental and molecular modeling techniques were used to better understand trends in surface wettability on mineral surfaces. The experimental techniques spanned the macroscale (contact angle measurements) to the nanoscale (cryogenic electronic microscopy and vibrational spectroscopy). We focused on an anionic surfactant and a well-characterized mineral phase representative of clay phases present in oil- and gas-producing shale deposits. Collectively, the results consistently demonstrate that the presence of surfactant in the aqueous fluid significantly affects the mineral-fluid interfacial structure. Experimental and molecular modeling results reveal details of the surfactant structure at the interface, and how this structure varies with surfactant coverage and fluid composition.

More Details

Imogolite in water: Simulating the effects of nanotube curvature on structure and dynamics

Applied Clay Science

Gonzalez, Rafael I.; Rojas-Nunez, Javier; Valencia, Felipe J.; Munoz, Francisco; Baltazar, Samuel E.; Allende, Sebastian; Rogan, Jose; Valdivia, Juan A.; Kiwi, Miguel; Ramírez, Ricardo; Greathouse, Jeffery A.

Imogolite is a fascinating inorganic nanotube that is found in nature or synthesized in a laboratory. The synthesis process is carried out in liquid media, and leads to the formation of almost monodisperse diameter nanotubes. Here we investigate, employing classical molecular dynamics simulations, the interaction of water and imogolite for nanotubes of several radii. We established that water penetrates the pores of N = 9 and larger nanotubes, and adopts a coaxial arrangement in it. Also, while water molecules can diffuse along the center of the nanotube, the molecules next to the inner imogolite walls have very low mobility. At the outer nanotube wall, an increase of water density is observed, this effect extends up to 1 nm, beyond which water properties are bulk-like. Both phenomena are affected by the imogolite curvature.

More Details

Molecular dynamics simulation of zirconium tungstate amorphization and the amorphous-crystalline interface

Journal of Physics Condensed Matter

Greathouse, Jeffery A.; Weck, Philippe F.; Gordon, Margaret E.; Kim, Eunja; Bryan, Charles R.

Classical molecular dynamics (MD) simulations were performed to provide a conceptual understanding of the amorphous-crystalline interface for a candidate negative thermal expansion (NTE) material, ZrW2O8. Simulations of pressure-induced amorphization at 300 K indicate that an amorphous phase forms at pressures of 10 GPa and greater, and this phase persists when the pressure is subsequently decreased to 1 bar. However, the crystalline phase is recovered when the slightly distorted 5 GPa phase is relaxed to 1 bar. Simulations were also performed on a two-phase model consisting of the high-pressure amorphous phase in direct contact with the crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the crystalline-amorphous interface. Differences in local atomic structure at the interface are quantified from the simulation trajectories.

More Details
Results 26–50 of 256
Results 26–50 of 256