Feature detection and automation in Si MOS quantum dots toward automated qubit tuning
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
During CED-3a, the following information is required, as specified in the April 1,2016 revision of the CEdT process manual: A detailed cost estimate; and, A resource loaded(baseline) schedule for execution of the experiment, data analysis, and publication. Appendix I is a Gantt chart or various phases of the project.
A parallel, adaptive overlay grid procedure is proposed for use in generating all-hex meshes for stochastic (SVE) and representative (RVE) volume elements in computational materials modeling. The mesh generation process is outlined including several new advancements such as data filtering to improve mesh quality from voxelated and 3D image sources, improvements to the primal contouring method for constructing material interfaces and pillowing to improve mesh quality at boundaries. We show specific examples in crystal plasticity and syntactic foam modeling that have benefitted from the proposed mesh generation procedure and illustrate results of the procedure with several practical mesh examples.
Physical Review B
We present results from an experimental technique used to estimate the strength of Ta at extreme pressures (150 GPa) and strain rates (107s-1). A graded-density impactor (GDI) was fabricated using sputter deposition to produce an approximately 40-μm-thick film containing alternating layers of Al and Cu. The thicknesses of the respective layers are adjusted to give an effective density gradient through the film. The GDIs were launched with a 2-stage light gas gun, and shock-ramp-release velocity profiles were measured over timescales of ∼10 ns. Results are presented for the direct impact of the film onto LiF windows, which allows for a dynamic characterization of the GDI, as well as from impact onto thin (∼40μm) sputtered Ta samples backed by a LiF window. The measurements were coupled with mesoscale numerical simulations to infer the strength of Ta, and the results agree well with other high-pressure platforms, particularly when strain-rate, microstructural, and thermodynamic-path differences are considered.
International Journal of Plasticity
Crystal plasticity-finite element method (CP-FEM) is now widely used to understand the mechanical response of polycrystalline materials. However, quantitative mesh convergence tests and verification of the necessary size of polycrystalline representative volume elements (RVE) are often overlooked in CP-FEM simulations. Mesh convergence studies in CP-FEM models are more challenging compared to conventional finite element analysis (FEA) as they are not only computationally expensive but also require explicit discretization of individual grains using many finite elements. Resolving each grains within a polycrystalline domain complicates mesh convergence study since mesh convergence is strongly affected by the initial crystal orientations of grains and local loading conditions. In this work, large-scale CP-FEM simulations of single crystals and polycrystals are conducted to study mesh sensitivity in CP-FEM models. Various factors that may affect the mesh convergence in CP-FEM simulations, such as initial textures, hardening models and boundary conditions are investigated. In addition, the total number of grains required to obtain adequate RVE is investigated. Furthermore, this work provides a list of guidelines for mesh convergence and RVE generation in CP-FEM modeling.
Energies
The safety case for deep borehole disposal of nuclear wastes contains a safety strategy, an assessment basis, and a safety assessment. The safety strategy includes strategies for management, siting and design, and assessment. The assessment basis considers site selection, pre-closure, and post-closure, which includes waste and engineered barriers, the geosphere/natural barriers, and the biosphere and surface environment. The safety assessment entails a pre-closure safety analysis, a post-closure performance assessment, and confidence enhancement analyses. This paper outlines the assessment basis and safety assessment aspects of a deep borehole disposal safety case. The safety case presented here is specific to deep borehole disposal of Cs and Sr capsules, but is generally applicable to other waste forms, such as spent nuclear fuel. The safety assessments for pre-closure and post-closure are briefly summarized from other sources; key issues for confidence enhancement are described in greater detail. These confidence enhancement analyses require building the technical basis for geologically old, reducing, highly saline brines at the depth of waste emplacement, and using reactive-transport codes to predict their movement in post-closure. The development and emplacement of borehole seals above the waste emplacement zone is also important to confidence enhancement.
JOM. Journal of the Minerals, Metals & Materials Society
Bias. It’s a word that makes most of us squirm. Bias implies to us that we are “bad people” and are being accused of deliberately discriminating against others. Yet, if you ask a social scientist, you will find that it doesn't mean that at all; implicit bias is a neurologically based, energy-saving short cut. Our brains apply mental models to make thousands of quick decisions every day: which brand of milk to buy at the store or when to turn the wheel to avoid a traffic accident. Lastly, we form our implicit biases subconsciously over time, influenced by our upbringing, societal norms, and life experiences.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.