Publications

Results 1–25 of 55

Search results

Jump to search filters

PCalc User's Manual

Conley, Andrea C.; Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Hammond, Patrick H.; Davenport, Kathy D.; Begnaud, Michael E.

PCalc is a software tool that computes travel-time predictions, ray path geometry and model queries. This software has a rich set of features, including the ability to use custom 3D velocity models to compute predictions using a variety of geometries. The PCalc software is especially useful for research related to seismic monitoring applications.

More Details

LocOO3D User's Manual

Davenport, Kathy D.; Conley, Andrea C.; Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Begnaud, Michael A.

LocOO3D is a software tool that computes geographical locations for seismic events at regional to global scales. This software has a rich set of features, including the ability to use custom 3D velocity models, correlated observations and master event locations. The LocOO3D software is especially useful for research related to seismic monitoring applications, since it allows users to easily explore a variety of location methods and scenarios and is compatible with the CSS3.0 data format used in monitoring applications. The LocOO3D software, User's Manual, and Examples are available on the web at: https://github.com/sandialabs/LocOO3D For additional information on GeoTess, SALSA3D, RSTT, and other related software, please see: https://github.com/sandialabs/GeoTessJava, www.sandia.gov/geotess, www.sandia.gov/salsa3d, and www.sandia.gov/rstt

More Details

pCalc User's Manual

Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Begnaud, Michael A.

pCalc is a software tool that computes travel-time predictions, ray path geometry and model queries. This software has a rich set of features, including the ability to use custom 3D velocity models to compute predictions using a variety of geometries. The pCalc software is especially useful for research related to seismic monitoring applications. The pCalc software is available on the web at: www.sandia.gov/salsa3d/Software.html The software is packaged with this user's manual and a set of example datasets, the use of which is described in this manual.

More Details

LocOO3D User's Manual

Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Begnaud, Michael A.

Loc003D is a software tool that computes geographical locations for seismic events at regional to global scales. This software has a rich set of features, including the ability to use custom 3D velocity models, correlated observations and master event locations. The Loc003D software is especially useful for research related to seismic monitoring applications, since it allows users to easily explore a variety of location methods and scenarios and is compatible with the CSS3.0 software format used in monitoring applications. The Loc003D software is available on the web at: www.sandia.gov/salsa3d/Software.html The software is packaged with this user's manual and a set of example datasets, the use of which is described in this manual.

More Details

SALSA3D: A tomographic model of compressional wave slowness in the earth’s mantle for improved travel-time prediction and travel-time prediction uncertainty

Bulletin of the Seismological Society of America

Ballard, Sanford B.; Hipp, James R.; Begnaud, Michael L.; Young, Christopher J.; Encarnacao, Andre V.; Chael, Eric P.; Phillips, W.S.

The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. Motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source to receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. The computed pattern of uncertainty differs significantly from that of 1D distance-dependent traveltime uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.

More Details

GeoTess: A generalized Earth model software utility

Seismological Research Letters

Ballard, Sanford B.; Hipp, James R.; Kraus, Brian; Encarnacao, Andre V.; Young, Christopher J.

GeoTess is a model parameterization and software support library that manages the construction, population, storage, and interrogation of data stored in 2D and 3D Earth models. The software is available in Java and C++, with a C interface to the C++ library. The software has been tested on Linux, Mac, Sun, and PC platforms. It is open source and is available online (see Data and Resources).

More Details
Results 1–25 of 55
Results 1–25 of 55