Publications

Results 1–25 of 42

Search results

Jump to search filters

On-sun tracking evaluation of a small-scale tensile ganged heliostat prototype

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yellowhair, Julius; Armijo, Kenneth M.; Ortega, J.; Clair, Jim

Various ganged heliostat concepts have been proposed in the past. The attractive aspect of ganged heliostat concepts is multiple heliostats are grouped so that pedestals, tracking drives, and other components can be shared, thus reducing the number of components. The reduction in the number of components is thought to significantly reduce cost. However, since the drives and tracking mechanisms are shared, accurate on-sun tracking of grouped heliostats becomes challenging because the angular degrees-of-freedom are now limited for the multiple number of combined heliostats. In this paper, the preliminary evaluation of the on-sun tracking of a novel tensile-based cable suspended ganged heliostat concept is provided. In this concept, multiple heliostats are attached to two guide cables. The cables are attached to rotation spreader arms which are anchored to end posts on two ends. The guide cables form a catenary which makes tracking on-sun interesting and challenging. Tracking is performed by rotating the end plates that the two cables are attached to and rotating the individual heliostats in one axis. An additional degree-of-freedom can be added by differentially tensioning the two cables, but this may be challenging to do in practice. Manual on-sun tracking was demonstrated on small-scale prototypes. The rotation arms were coarsely controlled with linear actuators, and the individual heliostats were hand-adjusted in local pitch angle and locked in place with set screws. The coarse angle adjustments showed the tracking accuracy was 3-4 milli-radians. However, with better angle control mechanisms the tracking accuracy can be drastically improved. In this paper, we provide tracking data that was collected for a day, which showed feasibility for automated on-sun tracking. The next steps are to implement better angle control mechanisms and develop tracking algorithms so that the ganged heliostats can automatically track.

More Details

Optical performance modeling and analysis of a tensile ganged heliostat concept

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yellowhair, Julius; Armijo, Kenneth M.; Andraka, Charles E.; Ortega, J.; Clair, Jim

Designs of conventional heliostats have been varied to reduce cost, improve optical performance or both. In one case, reflective mirror area on heliostats has been increased with the goal of reducing the number of pedestals and drives and consequently reducing the cost on those components. The larger reflective areas, however, increase torques due to larger mirror weights and wind loads. Higher cost heavy-duty motors and drives must be used, which negatively impact any economic gains. To improve on optical performance, the opposite may be true where the mirror reflective areas are reduced for better control of the heliostat pointing and tracking. For smaller heliostats, gravity and wind loads are reduced, but many more heliostats must be added to provide sufficient solar flux to the receiver. For conventional heliostats, there seems to be no clear cost advantage of one heliostat design over other designs. The advantage of ganged heliostats is the pedestal and tracking motors are shared between multiple heliostats, thus can significantly reduce the cost on those components. In this paper, a new concept of cable-suspended tensile ganged heliostats is introduced, preliminary analysis is performed for optical performance and incorporated into a 10 MW conceptual power tower plant where it was compared to the performance of a baseline plant with a conventional radially staggered heliostat field. The baseline plant uses conventional heliostats and the layout optimized in System Advisor Model (SAM) tool. The ganged heliostats are suspended on two guide cables. The cables are attached to rotations arms which are anchored to end posts. The layout was optimized offline and then transferred to SAM for performance evaluation. In the initial modeling of the tensile ganged heliostats for a 10 MW power tower plant, equal heliostat spacing along the guide cables was assumed, which as suspected leads to high shading and blocking losses. The goal was then to optimize the heliostat spacing such that annual shading and blocking losses are minimized. After adjusting the spacing on tensile ganged heliostats for minimal blocking losses, the annual block/shading efficiency was greater than 90% and annual optical efficiency of the field became comparable to the conventional field at slightly above 60%.

More Details

On-sun testing of a high temperature bladed solar receiver and transient efficiency evaluation using AIR

ASME 2018 12th International Conference on Energy Sustainability, ES 2018, collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum

Ortega, J.; Khivsara, Sagar D.; Christian, Joshua M.; Dutta, Pradip; Ho, Clifford K.

Prior research at Sandia National Laboratories showed the potential advantages of using light-trapping features which are not currently used in direct tubular receivers. A horizontal bladed receiver arrangement showed the best potential for increasing the effective solar absorptance by increasing the ratio of effective surface area to the aperture footprint. Previous test results and models of the bladed receiver showed a receiver efficiency increase over a flat receiver panel of ~ 5-7% over a range of average irradiances, while showing that the receiver tubes can withstand temperatures > 800 °C with no issues. The bladed receiver is being tested at various peak heat fluxes ranging 75-150 kW/m2 under transient conditions using Air as a heat transfer fluid at inlet pressure ~250 kPa (~36 psi) using a regulating flow loop. The flow loop was designed and tested to maintain a steady mass flow rate for ~15 minutes using pressurized bottles as gas supply. Due to the limited flow-time available, a novel transient methodology to evaluate the thermal efficiencies is presented in this work. Computational fluid dynamics (CFD) models are used to predict the temperature distribution and the resulting transient receiver efficiencies. The CFD simulations results using air as heat transfer fluid have been validated experimentally at the National Solar Thermal Test Facility in Sandia National Labs.

More Details

Design and testing of a novel bladed receiver

ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum

Ortega, J.; Christian, Joshua M.; Ho, Clifford K.

Previous research at Sandia National Laboratories showed the potential advantages of using light-trapping features which are not currently used in direct tubular receivers. A horizontal bladed receiver arrangement showed the best potential for increasing the effective solar absorptance by increasing the ratio of effective surface area to the aperture footprint. Ray-tracing analyses using SolTrace were performed to understand the light-trapping effects of the bladed receivers, which enable re-reflections between the fins that enhance the effective solar absorptance. A parametric optimization study was performed to determine the best possible configuration with a fixed intrinsic absorptivity of 0.9 and exposed surface area of 1 m2. The resulting design consisted of three vertical panels 0.584 m long and 0.508 m wide and 3 blades 0.508 m long and 0.229 m wide with a downward tilt of 50 degrees from the horizontal. Each blade consisted of two panels which were placed in front of the three vertical panels. The receiver was tested at the National Solar Thermal Test Facility using pressurized air. However, the receiver was designed to operate using supercritical carbon dioxide (sCO2) at 650 °C and 15 MPa for 100,000 hours following the ASME Boiler and Pressure Vessel Code Section VIII Division 1. The air flowed through the leading panel of the blade first, and then recirculated toward the back panel of the blade before flowing through one of the vertical back panels. The test results of the bladed receiver design showed a receiver efficiency increase over a flat receiver panel of ∼5 - 7% (from ∼80% to ∼86%) over a range of average irradiances, while showing that the receiver tubes can withstand temperatures > 800 °C with no issues. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiencies. The predicted thermal efficiency and surface temperature values correspond to the measured efficiencies and surface temperatures within one standard deviation. In the near future, an sCO2 flow system will be built to expose the receiver to higher pressure and fluid temperatures which could yield higher efficiencies.

More Details

Design and testing of a novel bladed receiver

ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum

Ortega, J.; Christian, Joshua M.; Ho, Clifford K.

Previous research at Sandia National Laboratories showed the potential advantages of using light-trapping features which are not currently used in direct tubular receivers. A horizontal bladed receiver arrangement showed the best potential for increasing the effective solar absorptance by increasing the ratio of effective surface area to the aperture footprint. Ray-tracing analyses using SolTrace were performed to understand the light-trapping effects of the bladed receivers, which enable re-reflections between the fins that enhance the effective solar absorptance. A parametric optimization study was performed to determine the best possible configuration with a fixed intrinsic absorptivity of 0.9 and exposed surface area of 1 m2. The resulting design consisted of three vertical panels 0.584 m long and 0.508 m wide and 3 blades 0.508 m long and 0.229 m wide with a downward tilt of 50 degrees from the horizontal. Each blade consisted of two panels which were placed in front of the three vertical panels. The receiver was tested at the National Solar Thermal Test Facility using pressurized air. However, the receiver was designed to operate using supercritical carbon dioxide (sCO2) at 650 °C and 15 MPa for 100,000 hours following the ASME Boiler and Pressure Vessel Code Section VIII Division 1. The air flowed through the leading panel of the blade first, and then recirculated toward the back panel of the blade before flowing through one of the vertical back panels. The test results of the bladed receiver design showed a receiver efficiency increase over a flat receiver panel of ∼5 - 7% (from ∼80% to ∼86%) over a range of average irradiances, while showing that the receiver tubes can withstand temperatures > 800 °C with no issues. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiencies. The predicted thermal efficiency and surface temperature values correspond to the measured efficiencies and surface temperatures within one standard deviation. In the near future, an sCO2 flow system will be built to expose the receiver to higher pressure and fluid temperatures which could yield higher efficiencies.

More Details

Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

Applied Thermal Engineering

Ortega, J.

Single phase performance and appealing thermo-physical properties make supercritical carbon dioxide (s-CO2) a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ∼973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver's thermal performance when exposed to a concentrated solar power input of ∼0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. An in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. A receiver thermal efficiency ∼85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.

More Details

Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

Applied Thermal Engineering

Ortega, J.; Khivsara, Sagar; Christian, Joshua M.; Ho, Clifford K.; Dutta, Pradip

A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (∼50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal and mechanical stresses along with detailed creep-fatigue analysis of the tubes. The resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis displayed the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.

More Details

Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion

Ho, Clifford K.; Ortega, J.; Christian, Joshua M.; Yellowhair, Julius; Ray, Daniel; Kelton, John; Peacock, Gregory W.; Andraka, Charles E.

Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived, designed, and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced local view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Modeling results showed that fractal-like structures and geometries can increase the effective solar absorptance by 5 – 20% and the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. Meso-scale prototypes were fabricated using additive manufacturing techniques, and a macro-scale bladed receiver design was fabricated using Inconel 625 tubes. On-sun tests were performed using the solar furnace and solar tower at the National Solar Thermal Test facility. The test results demonstrated enhanced solar absorptance and thermal efficiency of the fractal-like designs.

More Details

Fractal-like receiver geometries and features for increased light trapping and thermal efficiency

AIP Conference Proceedings

Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Ortega, J.; Andraka, Charles E.

Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced local view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs, and meso-scale tests have been performed. Results show that fractal-like structures and geometries can increase the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. The impact was more pronounced for materials with lower intrinsic solar absorptances (<0.9). The goal of this work is to increase the effective solar absorptance of oxidized substrate materials from ∼0.9 to 0.95 or greater using these fractal-like geometries without the need for coatings.

More Details

Calorimetric evaluation of novel concentrating solar receiver geometries with enhanced effective solar absorptance

ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology

Ortega, J.; Yellowhair, Julius; Ho, Clifford K.; Christian, Joshua M.; Andraka, Charles E.

Direct solar power receivers consist of tubular arrays, or panels, which are typically tubes arranged side by side and connected to an inlet and outlet manifold. The tubes absorb the heat incident on the surface and transfer it to the fluid contained inside them. To increase the solar absorptance, high temperature black paint or a solar selective coating is applied to the surface of the tubes. However, current solar selective coatings degrade over the lifetime of the receiver and must be reapplied, which reduces the receiver thermal efficiency and increases the maintenance costs. This work presents an evaluation of several novel receiver shapes which have been denominated as fractal like geometries (FLGs). The FLGs are geometries that create a light-trapping effect, thus, increasing the effective solar absorptance and potentially increasing the thermal efficiency of the receiver. Five FLG prototypes were fabricated out of Inconel 718 and tested in Sandia's solar furnace at two irradiance levels of ∼15 and 30 W/cm2 and two fluid flow rates. Photographic methods were used to capture the irradiance distribution on the receiver surfaces and compared to results from ray-tracing models. This methods provided the irradiance distribution and the thermal input on the FLGs. Air at nearly atmospheric pressure was used as heat transfer fluid. The air inlet and outlet temperatures were recorded, using a data acquisition system, until steady state was achieved. Computational fluid dynamics (CFD) models, using the Discrete Ordinates (DO) radiation and the k-? Shear Stress Transport (SST) equations, were developed and calibrated, using the test data, to predict the performance of the five FLGs at different air flow rates and irradiance levels. The results showed that relative to a flat plate (base case), the new FLGs exhibited an increase in the effective solar absorptance from 0.86 to 0.92 for an intrinsic material absorptance of 0.86. Peak surface temperatures of ∼1000°C and maximum air temperature increases of ∼200°C were observed. Compared to the base case, the new FLGs showed a clear air outlet temperature increase. Thermal efficiency increases of ∼15%, with respect to the base case, were observed. Several tests, in different days, were performed to assess the repeatability of the results. The results obtained, so far, are very encouraging and display a very strong potential for incorporation in future solar power receivers.

More Details

Calorimetric evaluation of novel concentrating solar receiver geometries with enhanced effective solar absorptance

ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology

Ortega, J.; Yellowhair, Julius; Ho, Clifford K.; Christian, Joshua M.; Andraka, Charles E.

Direct solar power receivers consist of tubular arrays, or panels, which are typically tubes arranged side by side and connected to an inlet and outlet manifold. The tubes absorb the heat incident on the surface and transfer it to the fluid contained inside them. To increase the solar absorptance, high temperature black paint or a solar selective coating is applied to the surface of the tubes. However, current solar selective coatings degrade over the lifetime of the receiver and must be reapplied, which reduces the receiver thermal efficiency and increases the maintenance costs. This work presents an evaluation of several novel receiver shapes which have been denominated as fractal like geometries (FLGs). The FLGs are geometries that create a light-trapping effect, thus, increasing the effective solar absorptance and potentially increasing the thermal efficiency of the receiver. Five FLG prototypes were fabricated out of Inconel 718 and tested in Sandia's solar furnace at two irradiance levels of ∼15 and 30 W/cm2 and two fluid flow rates. Photographic methods were used to capture the irradiance distribution on the receiver surfaces and compared to results from ray-tracing models. This methods provided the irradiance distribution and the thermal input on the FLGs. Air at nearly atmospheric pressure was used as heat transfer fluid. The air inlet and outlet temperatures were recorded, using a data acquisition system, until steady state was achieved. Computational fluid dynamics (CFD) models, using the Discrete Ordinates (DO) radiation and the k-? Shear Stress Transport (SST) equations, were developed and calibrated, using the test data, to predict the performance of the five FLGs at different air flow rates and irradiance levels. The results showed that relative to a flat plate (base case), the new FLGs exhibited an increase in the effective solar absorptance from 0.86 to 0.92 for an intrinsic material absorptance of 0.86. Peak surface temperatures of ∼1000°C and maximum air temperature increases of ∼200°C were observed. Compared to the base case, the new FLGs showed a clear air outlet temperature increase. Thermal efficiency increases of ∼15%, with respect to the base case, were observed. Several tests, in different days, were performed to assess the repeatability of the results. The results obtained, so far, are very encouraging and display a very strong potential for incorporation in future solar power receivers.

More Details
Results 1–25 of 42
Results 1–25 of 42