Publications

Results 51–75 of 90

Search results

Jump to search filters

Properties of brines formed by deliquescence of sea-salt aerosols

NACE - International Corrosion Conference Series

Bryan, Charles R.; Schindelholz, Eric J.

For long-term dry storage, most spent nuclear fuel in the United States is placed in welded 304 SS or 316 SS canisters that are stored within passively ventilated overpacks. As the canisters cool, sea-salt aerosols deposited on the canister surfaces will deliquesce to form potentially corrosive brines. We have used thermodynamic modeling to predict the chemical composition of the brines that form by deliquescence of sea-salt aerosols, and to estimate brine volumes and salt/brine volume ratios as a function of temperature and atmospheric relative humidity. We have also mixed representative brines and measured the physical and chemical properties of those brines over a range of temperatures. These data provide a matrix that can be used to predict the evolution of deliquescent brine properties over time on storage canister surfaces, as the canisters cool and surface relative humidity increases. Brine volumes and properties affect corrosion kinetics and damage distributions on the metal surface, and may offer important constraints on the expected rate and extent of corrosion and the timing of SCC crack initiation. The predicted brines do not consider reactions with atmospheric gases that are known to affect sea-salt particle and deliquescent brine compositions under field conditions. The potential effects of such reactions are discussed, and preliminary modeling and experimental data are presented.

More Details

Analysis of Samples Collected from the Surface of Interim Storage Canisters at Calvert Cliffs in June 2017: Revision 01

Bryan, Charles R.; Schindelholz, Eric J.

In June 2017, dust and salt samples were collected from the surface of Spent Nuclear Fuel (SNF) dry storage canisters at the Calvert Cliffs Nuclear Power Plant. The samples were delivered to Sandia National laboratories for analysis. Two types of samples were collected: filter-backed Scotch-Brite TM pads were used to collect dry dust samples for characterization of salt and dust morphologies and distributions; and Saltsmart TM test strips were used to collect soluble salts for determining salt surface loadings per unit area. After collection, the samples were sealed into plastic sleeves for shipping. Condensation within the sleeves containing the Scotch-Brite TM samples remobilized the salts, rendering them ineffective for the intended purpose, and also led to mold growth, further compromising the samples; for these reasons, the samples were not analyzed. The SaltSmart TM samples were unaffected and were analyzed by ion chromatography for major anions and cations. The results of those analyses are presented here.

More Details

FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters

Schindelholz, Eric J.; Bryan, Charles R.; Alexander, Christopher L.

This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosion work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.

More Details

Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel

Corrosion

Schaller, Rebecca S.; Taylor, Jason M.; Rodelas, Jeffrey R.; Schindelholz, Eric J.

The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. A microelectrochemical cell was used to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥50 μm.

More Details

Corrosion properties of powder bed fusion additively manufactured stainless steels

Materials Science and Technology Conference and Exhibition 2017, MS and T 2017

Schaller, Rebecca S.; Taylor, Jason M.; Rodelas, Jeffrey R.; Schindelholz, Eric J.

Metal additive manufacturing (AM) has recently become a desirable process for complex parts across a broad range of applications. However, AM materials often have a varied microstructure due to non-equilibrium solidification conditions. While some adjustments have been made in manufacturing to enhance mechanical traits, very little attention has been directed at understanding the corrosion properties of these materials. The microstructural characteristics of the AM materials may lead to reduction in the corrosion resistance of the AM alloys compared to their conventional counterparts. This presentation explores the corrosion susceptibility of AM stainless steels in aqueous sodium chloride environments as well as industry relevant solutions. Further detailed corrosion studies combined with microstructural characterization provide insight into the microstructural influences on corrosion.

More Details

Arc-Fault Primer: Numerical, Analytical, and Experimental Characteristics of Initiation and Sustainment of Arc Plasmas (DRAFT)

Armijo, Kenneth M.; Lavrova, Olga A.; Harrison, Richard K.; Rodriguez, Salvador B.; Johnson, Jay; Schindelholz, Eric J.

While arc-faults are rare in electrical installations, many documented events have led to fires that resulted in significant damage to energy-generation, commercial and residential systems, as well as surrounding structures, in both the United States and abroad. Arc-plasma discharges arise over time due to a variety of reliability issues related to cable material degradation, electrical and mechanical stresses or acute conductive wiring dislocations. These may lead to discontinuity between energized conductors, facilitating arcing events and fires. Arc-flash events rapidly release significant energy in a localized volume, where the electric arc experiences a reduction in resistance. This facilitates a reduction in electrical resistance as the arc temperature and pressure can increase rapidly. Strong pressure waves, electromagnetic interference (EMI), and intense light from an arc pose a threat to electrical worker safety and system equipment. This arc-fault primer provides basic fundamental insight into arc-fault plasma discharges, and an overview of direct current (DC) and alternating current (AC) arc-fault phenomena. This primer also covers pressure waves and EMI arc-fault hazard analyses related to incident energy prediction and potential damage analysis. Mitigation strategies are also discussed related to engineering design and employment of protective devices including arc-fault circuit interrupters (AFCIs). Best practices related to worker safety are also covered, especially as they pertain to electrical codes and standards, particularly Institute of Electrical and Electronics Engineers (IEEE) 1584 and National Fire Protection Agency (NFPA) 70E. Throughout the primer various modelling and test capabilities at Sandia National Laboratories are also covered, especially as they relate to novel methods of arc-fault/arc-flash characterization and mitigation approaches. Herein, this work describes methods for producing and characterizing controlled, sustained arcs at atmospheric pressures as well as methods for mitigation with novel materials.

More Details
Results 51–75 of 90
Results 51–75 of 90