Publications

Results 76–100 of 132

Search results

Jump to search filters

Thermo-mechanical study of bare 48Y UF6 containers exposed to the regulatory fire environment

Lopez Mestre, Carlos L.; Morrow, Charles W.; Ammerman, Douglas J.

Most of the regulatory agencies world-wide require that containers used for the transportation of natural UF6 and depleted UF6 must survive a fully-engulfing fire environment for 30 minutes as described in 10CFR71 and in TS-R-1. The primary objective of this project is to examine the thermo-mechanical performance of 48Y transportation cylinders when exposed to the regulatory hypothetical fire environment without the thermal protection that is currently used for shipments in those countries where required. Several studies have been performed in which UF6 cylinders have been analyzed to determine if the thermal protection currently used on UF6 cylinders of type 48Y is necessary for transport. However, none of them could clearly confirm neither the survival nor the failure of the 48Y cylinder when exposed to the regulatory fire environment without the additional thermal protection. A consortium of five companies that move UF6 is interested in determining if 48Y cylinders can be shipped without the thermal protection that is currently used. Sandia National Laboratories has outlined a comprehensive testing and analysis project to determine if these shipping cylinders are capable of withstanding the regulatory thermal environment without additional thermal protection. Sandia-developed coupled physics codes will be used for the analyses that are planned. A series of destructive and non-destructive tests will be performed to acquire the necessary material and behavior information to benchmark the models and to answer the question about the ability of these containers to survive the fire environment. Both the testing and the analysis phases of this project will consider the state of UF6 under thermal and pressure loads as well as the weakening of the steel container due to the thermal load. Experiments with UF6 are also planned to collect temperature- and pressure-dependent thermophysical properties of this material.

More Details

Construction of an unyielding target for large horizontal impacts

Ammerman, Douglas J.; Davie, Neil T.; Kalan, Robert K.

Sandia National Laboratories has constructed an unyielding target at the end of its 2000-foot rocket sled track. This target is made up of approximately 5 million pounds of concrete, an embedded steel load spreading structure, and a steel armor plate face that varies from 10 inches thick at the center to 4 inches thick at the left and right edges. The target/track combination will allow horizontal impacts at regulatory speeds of very large objects, such as a full-scale rail cask, or high-speed impacts of smaller packages. The load-spreading mechanism in the target is based upon the proven design that has been in use for over 20 years at Sandia's aerial cable facility. That target, with a weight of 2 million pounds, has successfully withstood impact forces of up to 25 million pounds. It is expected that the new target will be capable of withstanding impact forces of more than 70 million pounds. During construction various instrumentation was placed in the target so that the response of the target during severe impacts can be monitored. This paper will discuss the construction of the target and provide insights on the testing capabilities at the sled track with this new target.

More Details

Flat plate puncture test convergence study

Ammerman, Douglas J.

The ASME Task Group on Computational Mechanics for Explicit Dynamics is investigating the types of finite element models needed to accurately solve various problems that occur frequently in cask design. One type of problem is the 1-meter impact onto a puncture spike. The work described in this paper considers this impact for a relatively thin-walled shell, represented as a flat plate. The effects of mesh refinement, friction coefficient, material models, and finite element code will be discussed. The actual punch, as defined in the transport regulations, is 15 cm in diameter with a corner radius of no more than 6 mm. The punch used in the initial part of this study has the same diameter, but has a corner radius of 25 mm. This more rounded punch was used to allow convergence of the solution with a coarser mesh. A future task will be to investigate the effect of having a punch with a smaller corner radius. The 25-cm thick type 304 stainless steel plate that represents the cask wall is 1 meter in diameter and has added mass on the edge to represent the remainder of the cask. The amount of added mass to use was calculated using Nelm's equation, an empirically derived relationship between weight, wall thickness, and ultimate strength that prevents punch through. The outer edge of the plate is restrained so that it can only move in the direction parallel to the axis of the punch. Results that are compared include the deflection at the edge of the plate, the deflection at the center of the plate, the plastic strains at radius r=50 cm and r=100 cm , and qualitatively, the distribution of plastic strains. The strains of interest are those on the surface of the plate, not the integration point strains. Because cask designers are using analyses of this type to determine if shell will puncture, a failure theory, including the effect of the tri-axial nature of the stress state, is also discussed. The results of this study will help to determine what constitutes an adequate finite element model for analyzing the puncture hypothetical accident.

More Details
Results 76–100 of 132
Results 76–100 of 132