Publications

Results 101–125 of 132

Search results

Jump to search filters

Numerical analyses of locomotive impacts on a spent fuel truck cask and trailer

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Ammerman, Douglas J.; Stevens, Dave; Barsotti, Matt

During the transportation of spent nuclear fuel by truck, the possibility exists that a train could run into the spent fuel cask at a grade crossing. Sandia National Laboratories has conducted a numerical study to assess the possibility of cask breach or material release in the event of a high-speed, broadside locomotive collision. A numerical approach has the advantage over conducting a physical test as was done in the 1970s [1] in that varying parameters can be examined. For example, one of the criticisms of the 1970s test was the height of the cask. In the test, the centerline of the cask was above the main frame-rails of the locomotive. In this study the position of the cask with respect to the locomotive was varied. The response of the cask and trailer in different collision scenarios was modeled numerically with LS-DYNA [2]. The simulations were performed as a collaborative endeavor between Sandia National Laboratories (SNL), Applied Research Associates, Inc. (ARA) and Foster-Miller, Inc (FMI). ARA developed the GA-4 Spent Fuel Cask and Cask Transporter models described in this report. These models were then combined with two existing FMI heavy freight locomotive finite element models to create the overall simulation scenarios. The modeling effort, results, and conclusions are presented in this paper. Copyright © 2005 by ASME.

More Details

Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

Mills, G.S.; Ammerman, Douglas J.; Lopez Mestre, Carlos L.

The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

More Details
Results 101–125 of 132
Results 101–125 of 132