Considerations on the Relationship Between Dosimetry Metrics and Experimental Conditions
Abstract not provided.
Abstract not provided.
Abstract not provided.
L-{alpha}-alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10{sup 5} Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in {sup 60}Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by irradiations in conjunction with CaF{sub 2}:Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including those provided by the Annular Core Research Reactor and Sandia Pulsed Reactor.
An automatic optical track identification/counting system has been developed for counting the total number of fission tracks on a fused quartz solid state track recorder. The system is capable of analyzing up to twenty recorders a day with an operator input of less than two hours. The uncertainty introduced by the counting system is about one percent. 6 refs., 2 figs.